Physical stimuli can act in either a synergistic or antagonistic manner to regulate cell fate decisions, but it is less clear whether insoluble signals alone can direct human pluripotent stem (hPS) cell differentiation into specialized cell types. We previously reported that stiff materials promote nuclear localization of the Yes-associated protein (YAP) transcriptional coactivator and support long-term self-renewal of hPS cells. Here, we show that even in the presence of soluble pluripotency factors, compliant substrata inhibit the nuclear localization of YAP and promote highly efficient differentiation of hPS cells into postmitotic neurons. In the absence of neurogenic factors, the effective substrata produce neurons rapidly (2 wk) and more efficiently (>75%) than conventional differentiation methods. The neurons derived from substrate induction express mature markers and possess action potentials. The hPS differentiation observed on compliant surfaces could be recapitulated on stiff surfaces by adding small-molecule inhibitors of F-actin polymerization or by depleting YAP. These studies reveal that the matrix alone can mediate differentiation of hPS cells into a mature cell type, independent of soluble inductive factors. That mechanical cues can override soluble signals suggests that their contributions to early tissue development and lineage commitment are profound.H uman pluripotent stem (hPS) cells, which include human embryonic (hES) and human induced pluripotent stem cells, possess the remarkable capacity to self-renew indefinitely and differentiate into almost any specialized cell type (1, 2). They represent a potentially unlimited supply of cells for regenerative medicine, drug screening, and studies of human development. These applications require efficient and reproducible conditions to direct hPS cell differentiation into specialized cell types, including neuronal cells. To date, the focus has been on identifying soluble factors, such as growth factors and small molecules, that can influence hPS cell differentiation. The ability of insoluble signals to promote hPS cell-lineage specification remains less clear.Studies in murine ES cells (3, 4) and tissue-specific stem cells (5-10) indicate that the adhesive and mechanical properties of the substratum used can influence cell fate decisions (11). For example, human mesenchymal stem (hMS) cells are sensitive to changes in substrate elasticity and respond by differentiating toward distinct cell lineages depending on the stiffness of the matrix (5). These hMS cells, however, tend to exist in heterogeneous cell populations and lack a specific and unique cell characterization marker (12). Their differentiation capacity is restricted to a few tissues that arise from the mesoderm lineage, such as bone, fat, and cartilage. Indeed, there are questions about whether these cells undergo transdifferentiation to cell types, such as neurons (12)(13)(14). With the unique ability to differentiate into almost any cell type, hPS cells serve as an excellent model for und...
Deciphering the structural requirements and mechanisms for internalization of cell-penetrating peptides (CPPs) is required to improve their delivery efficiency. Herein, a unique role of tryptophan (Trp) residues in the interaction and structuring of cationic CPP sequences with glycosaminoglycans (GAGs) has been characterized, in relation with cell internalization. Using isothermal titration calorimetry, circular dichroism, NMR, mass spectrometry, and phase-contrast microscopy, we compared the interaction of 7 basic CPPs with 5 classes of GAGs. We found that the affinity of CPPs for GAGs increases linearly with the number of Trp residues, from 30 nM for a penetratin analog with 1 Trp residue to 1.5 nM for a penetratin analog with 6 Trp residues for heparin (HI); peptides with Trp residues adopt a predominantly β-strand structure in complex with HI and form large, stable β-sheet aggregates with GAGs; and in the absence of any cytotoxicity effect, the quantity of peptide internalized into CHO cells increased 2 times with 1 Trp residue, 10 times with 2 Trp residues, and 20 times with 3 Trp residues, compared with +6 peptides with no Trp residues. Therefore, Trp residues represent molecular determinants in basic peptide sequences not only for direct membrane translocation but also for efficient endocytosis through GAGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.