The efficacy of neural network (NN) and partial least-squares (PLS) methods is compared for the prediction of NMR chemical shifts for both 1H and 13C nuclei using very large databases containing millions of chemical shifts. The chemical structure description scheme used in this work is based on individual atoms rather than functional groups. The performances of each of the methods were optimized in a systematic manner described in this work. Both of the methods, least-squares and neural network analyses, produce results of a very similar quality, but the least-squares algorithm is approximately 2--3 times faster.
Identification and validation of drug-resistant mutations can provide important insights into the mechanism of action of a compound. Here we demonstrate the feasibility of such an approach in mammalian cells using next-generation sequencing of drug-resistant clones and CRISPR-Cas9-mediated gene editing on two drug-target pairs, 6-thioguanine-HPRT1 and triptolide-ERCC3. We showed that disrupting functional HPRT1 allele or introducing ERCC3 point mutations by gene editing can confer drug resistance in cells.
BackgroundThis article coincides with the 40 year anniversary of the first published works devoted to the creation of algorithms for computer-aided structure elucidation (CASE). The general principles on which CASE methods are based will be reviewed and the present state of the art in this field will be described using, as an example, the expert system Structure Elucidator.ResultsThe developers of CASE systems have been forced to overcome many obstacles hindering the development of a software application capable of drastically reducing the time and effort required to determine the structures of newly isolated organic compounds. Large complex molecules of up to 100 or more skeletal atoms with topological peculiarity can be quickly identified using the expert system Structure Elucidator based on spectral data. Logical analysis of 2D NMR data frequently allows for the detection of the presence of COSY and HMBC correlations of "nonstandard" length. Fuzzy structure generation provides a possibility to obtain the correct solution even in those cases when an unknown number of nonstandard correlations of unknown length are present in the spectra. The relative stereochemistry of big rigid molecules containing many stereocenters can be determined using the StrucEluc system and NOESY/ROESY 2D NMR data for this purpose.ConclusionThe StrucEluc system continues to be developed in order to expand the general applicability, provide improved workflows, usability of the system and increased reliability of the results. It is expected that expert systems similar to that described in this paper will receive increasing acceptance in the next decade and will ultimately be integrated directly to analytical instruments for the purpose of organic analysis. Work in this direction is in progress. In spite of the fact that many difficulties have already been overcome to deliver on the spectroscopist's dream of "fully automated structure elucidation" there is still work to do. Nevertheless, as the efficiency of expert systems is enhanced the solution of increasingly complex structural problems will be achievable.
The accuracy of (13)C chemical shift prediction by both DFT GIAO quantum-mechanical (QM) and empirical methods was compared using 205 structures for which experimental and QM-calculated chemical shifts were published in the literature. For these structures, (13)C chemical shifts were calculated using HOSE code and neural network (NN) algorithms developed within our laboratory. In total, 2531 chemical shifts were analyzed and statistically processed. It has been shown that, in general, QM methods are capable of providing similar but inferior accuracy to the empirical approaches, but quite frequently they give larger mean average error values. For the structural set examined in this work, the following mean absolute errors (MAEs) were found: MAE(HOSE) = 1.58 ppm, MAE(NN) = 1.91 ppm and MAE(QM) = 3.29 ppm. A strategy of combined application of both the empirical and DFT GIAO approaches is suggested. The strategy could provide a synergistic effect if the advantages intrinsic to each method are exploited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.