Enterovirus 71 (EV71) causes life-threatening epidemics in Asia and can be phylogenetically classified into three major genogroups (A∼C) including 11 genotypes (A, B1∼B5, and C1∼C5). Recently, EV71 epidemics occurred cyclically in Taiwan with different genotypes. In recent years, human studies using post-infection sera obtained from children have detected antigenic variations among different EV71 strains. Therefore, surveillance of enterovirus 71 should include phylogenetic and antigenic analysis. Due to limitation of sera available from children with EV71 primary infection, suitable animal models should be developed to generate a panel of antisera for monitoring EV71 antigenic variations. Twelve reference strains representing the 11 EV71 genotypes were grown in rhabdomyosarcoma cells. Infectious EV71 particles were purified and collected to immunize rabbits. The rabbit antisera were then employed to measure neutralizing antibody titers against the 12 reference strains and 5 recent strains. Rabbits immunized with genogroup B and C viruses consistently have a lower neutralizing antibody titers against genogroup A (≧8-fold difference) and antigenic variations between genogroup B and C viruses can be detected but did not have a clear pattern, which are consistent with previous human studies. Comparison between human and rabbit neutralizing antibody profiles, the results showed that ≧8-fold difference in rabbit cross-reactive antibody ratios could be used to screen EV71 isolates for identifying potential antigenic variants. In conclusion, a rabbit model was developed to monitor antigenic variations of EV71, which are critical to select vaccine strains and predict epidemics.
Background Human enteroviruses contain over 100 serotypes. We have routinely conducted enterovirus surveillance in northern Taiwan; but about 10% of isolates could not be serotyped using traditional assays. Next-generation sequencing (NGS) is a powerful tool for genome sequencing. Methods In this study, we established an NGS platform to conduct genome sequencing for the serologically untypable enterovirus isolates. Results Among 130 serologically untypable isolates, 121 (93%) of them were classified into 29 serotypes using CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer)-based RT-PCR to amplify VP1 genes (VP1-CODEHOP). We further selected 52 samples for NGS and identified 59 genome sequences from 51 samples, including 8 samples containing two virus genomes. We also detected 23 genome variants (nucleotide identity < 90% compared with genome sequences in the public domain) which were potential genetic recombination, including 9 inter-serotype recombinants and 14 strains with unknown sources of recombination. Conclusions We successfully integrated VP1-CODEHOP and NGS techniques to conduct genomic analysis of serologically untypable enteroviruses. Electronic supplementary material The online version of this article (10.1186/s12929-019-0541-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.