Loratadine is a long acting non-sedating anti-histaminic agent that was developed for the treatment of seasonal allergic rhinitis, whose anti-histaminic action is more effective than the other anti-histaminic drugs available commercially. This project was carried out to prepare an acceptable suspension through studying the release of drug in presence of different types and concentrations of suspending agents such as polysorbate 40, xanthan gum, sodium carboxymethylcellulose (NaCMC), aluminum magnesium silicate (veegum) and sodium alginate. The effects of these suspending agents were studied at pH 1.2 (0.1N HCl) and 37 Ù’C. The results showed that the release rate of loratadine in the presence of these suspending agents was dependent on their types and concentrations. The results showed that loratadine release from the formula prepared from xanthan gum is more than that prepared from other polymers in the following order: Sodium alginate < NaCMC < veegum < xanthan gum. However, elegancy of suspension was better on using xanthan gum in a concentration of 0.5%. The obtained results were utilized to formulate 0.1% suspension of loratadine which is physically stable with an optimum drug release. The rheology, sedimentation volume, resuspendability and expiration date were evaluated for the selected formula. The formula that contains loratadine, xanthan gum, glycerol, sorbitol, methyl paraben, propyl paraben, sodium edetate, raspberry flavor at pH 5.0 appears to be a promised formula to be present with estimated shelf life of about 3.8 years. Key word: loratadine, suspension, suspending agent, xanthan gum
This study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained floating on 0.1 N HCl (pH 1.2) medium over 24 hours. Besides, high yield beads of 73.07- 84.31% was obtained. Encapsulation efficiencies were in the range of 33.10 % -79.04 %, and were found to increase as a function of increasing drug: polymer mixture ratio and the gelling agent concentrations.Moreover, atenolol release profile from the beads was affected by the pH of the dissolution medium. It was found to be slowest in 0.1 N HCl (pH 1.2) and fastest in phosphate buffer (pH 6.8).The obtained results suggest that atenolol could be formulated as a controlled release beads, using ethylcellulose and alginate as polymers, using ACPD method. Keywords: Floating beads, Atenolol, Controlled Delivery System
In this study miconazole nitrate was formulated as topically applied emulgel; different formulas were prepared using sodium carboxymethylcellulose (SCMC) and carboxypolymethylene (carbomer 941) as gelling agents. The influence of type of gelling agent and concentration of both oil phase and emulsifying agent on drug release was studied and compared with commercially available miconazole nitrate cream (Mecozalen®). The results of in vitro release showed that SCMC emulgel bases gave better release than carbomer 941 bases and the release of drug increase from both bases as a function of increasing the concentration of emulisifying agent. The oil phase had retardation effect when its concentration increased. The formula which showed the highest drug release was chosen to evaluate its rheology and its stability .The rheological behavior of selected formula showed share-thinning flow indicating structural break down of intermolecular interaction between polymeric chains. Moreover, the expiration date of the selected emulgel was found to be 1.7 year as well as their physical properties like, color, pH and consistency remains constant along storage time. Keywords: emulgel, carbomer, miconazole nitrate, carboxymethyl cellulose.
Naproxen is non-steroidal anti-inflammatory drug, which has antipyretic and anti-inflammatory effect. It is extensively bound to plasma albumin, and exhibits gastric toxicity, so it may be more efficient to deliver the drug in its sustained release dosage form and adequate blood level is achieved. Three liquid formulations with in situ gelling properties have been assessed for their potential for the oral sustained delivery of naproxen . The formulations were dilute solutions of: (a) pectin; (b) gellan gum and; (c) sodium alginate, all containing complexed calcium ion that form gels when these ions are released in the acidic environment of the stomach . The viscosity of the sols and drug release were measured, and was found to be dependent on the type and concentration of the gelling agent. Pectin sol shows the highest viscosity and drug release . The influence of variation of gastric pH and the effect of added 1.6 mM Ca++ ions on the gelation property and the release profile of the liquid formulations were examined. The efficiency of gelation was significantly reduced with increase of pH. In addition the influence of different concentrations of sorbitol were determined .The results showed that 10% w/v sorbitol is the best concentration that maintained fluidity and ease of administration for the selected formula . The selected formula was examined for its stability and expiration date, and, it was found that there was no evidence of physical changes under experimental conditions, with estimated expiration of about 4.1 years and pH of the formula stated at 5.1. Key word: naproxen, in situ gelling, oral preparations, gel.
Metoprolol is a β1 adrenergic blocker used in treatment of heart diseases. Metoprolol (100mg) tablets was formulated as a modified release oral system utilizing the concept of bilayer system, first layer contained (30mg) as immediate release and the other (70mg) in the sustained release matrix. The immediate release layer consisted of lactose or microcrystalline cellulose as diluents with sodium starch glycolate or sodium croscarmellose as disintegrants. The result showed that the layer contains microcrystalline cellulose and 2% sodium starch glycolate gave disintegration time similar to that of conventional metoprolol tartrate tablet. This result was subjected in the subsequent preparation of the bilayer tablet. The sustained release layer was prepared using three polymers: ethylcellulose (EC), Hydroxypropyl methylcellulose (HPMC) and hydroxyl ethylcellulose (HEC) as retardant materials. It was found that the combination of EC with HPMC in ratio of 2:1 in F11 was best formula because of it’s release profile and the tablet integrity and dimensions were conserved for the period of the test, but according to similarity factor (f Â2Â), F15 (which contained EC:HPMC in ratio 2:1 with polyvinyl pyrrolidone (PVP) as a binder) was the best formula showed higher (f2Â) among all other formulas and equals to 72.3 comparing to reference product. Key words: Metoprolol, Bilayer tablet, Immediate release, Sustained release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.