Digital 3D capture and reliable reproduction of architectural features is the first and most difficult step towards defining a heritage BIM. Three-dimensional digital survey technologies, such as TLS and photogrammetry, enable experts to scan buildings with a new level of detail. Challenges in the tracing of parametric objects in a TLS point cloud include the reconstruction of occluded parts, measurement of uncertainties relevant to surface reflectivity, and edge detection and location. In addition to image-based techniques being considered cost effective, highly flexible, and efficient in producing a high-quality 3D textured model, they also provide a better interpretation of surface linear characteristics. This article addresses an architecture survey workflow using photogrammetry and TLS to optimize a point cloud that is sufficient for a reliable HBIM. Fusion-based workflows were proposed during the recording of two heritage sites—the Matbouli House Museum in Historic Jeddah, a UNESCO World Heritage Site; and Asfan Castle. In the Matbouli House Museum building, which is rich with complex architectural features, multi-sensor recording was implemented at different resolutions and levels of detail. The TLS data were used to reconstruct the basic shape of the main structural elements, while the imagery’s superior radiometric data and accessibility were effectively used to enhance the TLS point clouds for improving the geometry, data interpretation, and parametric tracing of irregular objects in the facade. Furthermore, in the workflow that is considered to be the ragged terrain of the Castle of Asfan, here, the TLS point cloud was supplemented with UAV data in the upper building zones where the shadow data originated. Both datasets were registered using an ICP algorithm to scale the photogrammetric data and define their actual position in the construction system. The hybrid scans were imported and processed in the BIM environment. The building components were segmented and classified into regular and irregular surfaces, in order to perform detailed building information modeling of the architectural elements. The proposed workflows demonstrated an appropriate performance in terms of reliable and complete BIM mapping in the complex structures.
This paper develops a model, introduced in software, namely Multi-Criteria Decision-Making Model (MCDMM). The model helps decision makers selecting the most suitable alternative based on the customer requirements and preferences. Analytic Hierarchy Process (AHP) and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (Fuzzy TOPSIS) form a package that covers most available data types in construction projects. In MCDMM, AHP produces criteria relative weights according to their influence on the discussed problem, while Fuzzy TOPSIS is applied to rank the available alternatives. The model consists of two modules, first one uses AHP only to deal with precise, qualitative alongside quantitative data, while the other module combines AHP with Fuzzy TOPSIS due to the importance of linguistic variables to cover undocumented data. MCDMM is verified using two real case studies. The model is applied to a real case project for constructing solar power plants at Saudi Arabia. A decision required to select the most suitable surveying technique for producing Digital Terrain Model (DTM) among four alternatives (Total Station, Remote Sensing, Photogrammetry, and Global Positioning Systems). This issue is studied and key points are identified for prioritizing among them. Total Station is selected based on the model results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.