The online version of this article has a Supplementary Appendix. BackgroundThe lifespan of red blood cells is terminated when macrophages remove senescent red blood cells by erythrophagocytosis. This puts macrophages at the center of systemic iron recycling in addition to their functions in tissue remodeling and innate immunity. Thus far, erythrophagocytosis has been studied by evaluating phagocytosis of erythrocytes that were damaged to mimic senescence. These studies have demonstrated that acquisition of some specific individual senescence markers can trigger erythrophagocytosis by macrophages, but we hypothesized that the mechanism of erythrophagocytosis of such damaged erythrocytes might differ from erythrophagocytosis of physiologically aged erythrocytes. Design and MethodsTo test this hypothesis we generated an erythrocyte population highly enriched in senescent erythrocytes by a hypertransfusion procedure in mice. Various erythrocyte-aging signals were analyzed and erythrophagocytosis was evaluated in vivo and in vitro. ResultsThe large cohort of senescent erythrocytes from hypertransfused mice carried numerous aging signals identical to those of senescent erythrocytes from control mice. Phagocytosis of fluorescently-labeled erythrocytes from hypertransfused mice injected into untreated mice was much higher than phagocytosis of labeled erythrocytes from control mice. However, neither erythrocytes from hypertransfused mice, nor those from control mice were phagocytosed in vitro by primary macrophage cultures, even though these cultures were able to phagocytose oxidatively damaged erythrocytes. ConclusionsThe large senescent erythrocyte population found in hypertransfused mice mimics physiologically aged erythrocytes. For effective erythrophagocytosis of these senescent erythrocytes, macrophages depend on some features of the intact phagocytosing tissue for support. ABSTRACT© F e r r a t a S t o r t i F o u n d a t i o n
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.