Circular RNAs (circRNAs) are widespread circles of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and microRNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms with no detectable circRNAs. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes.
Epithelial sodium channels (ENaCs) are located on the apical surface of cells and funnel Na(+) ions from the lumen into the cell. ENaC function also regulates extracellular fluid volume as water flows across membranes accompanying Na(+) ions to maintain osmolarity. To examine the sites of expression and intracellular localization of ENaC, we generated polyclonal antibodies against the extracellular domain of human α-ENaC subunit that we expressed in E. coli. Three-dimensional (3D) confocal microscopy of immunofluorescence using these antibodies for the first time revealed that ENaCs are uniformly distributed on the ciliary surface in all epithelial cells with motile cilia lining the bronchus in human lung and female reproductive tract, all along the fimbrial end of the fallopian tube, the ampulla and rare cells in the uterine glands. Quantitative analysis indicated that cilia increase cell surface area >70-fold and the amount of ENaC on cilia is >1,000-fold higher than on non-ciliated cell surface. These findings indicate that ENaC functions as a regulator of the osmolarity of the periciliary fluid bathing the cilia. In contrast to ENaC, cystic fibrosis transmembrane conductance regulator (CFTR) that channels chloride ions from the cytoplasm to the lumen is located mainly on the apical side, but not on cilia. The cilial localization of ENaC requires reevaluation of the mechanisms of action of CFTR and other modulators of ENaC function. ENaC on motile cilia should be essential for diverse functions of motile cilia, such as germ cell transport, fertilization, implantation, clearance of respiratory airways and cell migration.
Epidermal growth factor receptor (EGFR) mutations identify patients with lung cancer who derive benefit from kinase inhibitors. However, most patients eventually develop resistance, primarily due to the T790M second‐site mutation. Irreversible inhibitors (e.g., osimertinib/AZD9291) inhibit T790M‐EGFR, but several mechanisms, including a third‐site mutation, C797S, confer renewed resistance. We previously reported that a triple mixture of monoclonal antibodies, 3×mAbs, simultaneously targeting EGFR, HER2, and HER3, inhibits T790M‐expressing tumors. We now report that 3×mAbs, including a triplet containing cetuximab and trastuzumab, inhibits C797S‐expressing tumors. Unlike osimertinib, which induces apoptosis, 3×mAbs promotes degradation of the three receptors and induces cellular senescence. Consistent with distinct mechanisms, treatments combining 3×mAbs plus sub‐inhibitory doses of osimertinib synergistically and persistently eliminated tumors. Thus, oligoclonal antibodies, either alone or in combination with kinase inhibitors, might preempt repeated cycles of treatment and rapid emergence of resistance.
Signal transduction by receptor tyrosine kinases (RTKs) and nuclear receptors for steroid hormones is essential for body homeostasis, but the cross-talk between these receptor families is poorly understood. We observed that glucocorticoids inhibit signalling downstream of EGFR, an RTK. The underlying mechanism entails suppression of EGFR’s positive feedback loops and simultaneous triggering of negative feedback loops that normally restrain EGFR. Our studies in mice reveal that the regulation of EGFR’s feedback loops by glucocorticoids translates to circadian control of EGFR signalling: EGFR signals are suppressed by high glucocorticoids during the active phase (night-time in rodents), while EGFR signals are enhanced during the resting phase. Consistent with this pattern, treatment of animals bearing EGFR-driven tumours with a specific kinase inhibitor was more effective if administered during the resting phase of the day, when glucocorticoids are low. These findings support a circadian clock-based paradigm in cancer therapy.
Long noncoding RNAs (lncRNAs) are emerging as regulators of gene expression in pathogenesis, including cancer. Recently, lncRNAs have been implicated in progression of specific subtypes of breast cancer. One aggressive, basal-like subtype associates with increased EGFR signaling, while another, the HER2-enriched subtype, engages a kin of EGFR. Based on the premise that EGFR-regulated lncRNAs might control the aggressiveness of basal-like tumors, we identified multiple EGFR-inducible lncRNAs in basal-like normal cells and overlaid them with the transcriptomes of over 3,000 breast cancer patients. This led to the identification of 11 prognostic lncRNAs. Functional analyses of this group uncovered LINC01089 (here renamed LncRNA Inhibiting Metastasis; LIMT), a highly conserved lncRNA, which is depleted in basal-like and in HER2-positive tumors, and the low expression of which predicts poor patient prognosis. Interestingly, EGF rapidly downregulates LIMT expression by enhancing histone deacetylation at the respective promoter. We also find that LIMT inhibits extracellular matrix invasion of mammary cells in vitro and tumor metastasis in vivo. In conclusion, lncRNAs dynamically regulated by growth factors might act as novel drivers of cancer progression and serve as prognostic biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.