This study examines the extent to which the floods in the Negev Desert, an area that constitutes the southern half of Israel, are not the outcome of purely local weather conditions but are, rather, the result of distinct synoptic-scale events. This was done through compiling and analysing a hydro-climatological database of all the major floods in the Negev, and then categorizing them manually into synoptic types that cause the major floods.The type analysis is based on the US National Meteorological Center data sets with 2.5°× 2.5°resolution analysed by GrADS. Data were compiled and studied for 52 floods for the period 1965-94, with peak discharge above the magnitude of 5 year recurrence intervals (RI > 5 years) in at least one drainage basin.Distinct extreme synoptic patterns are indeed associated with 42 of the 52 floods. They were grouped into four synoptic types, two of which were associated with 37 events: (a) an active Red Sea trough, defined as a surface trough extending from East Africa through the Red Sea toward the eastern Mediterranean, accompanied by a pronounced trough at the 500 hPa level over eastern Egypt: (b) a Syrian low, defined as a well-developed Mediterranean cyclone accompanied by a pronounced upper-level trough, both located over Syria. Each of the four synoptic types has its own evolution course, and a unique seasonal and spatial distribution of its associated flooded basins.These findings imply that the major floods in the Negev can be considered as signatures of exceptional synoptic-scale evolutions, and that major floods reflect extreme climatic events. Our results indicate that it is possible to use a set of dynamic and thermodynamic variables for predicting the occurrence and location of major flash floods.
The Dead Sea is a terminal lake of one of the largest hydrological systems in the Levant and may thus be viewed as a large rain gauge for the region. Variations of its level are indicative of the climate variations in the region. Here, we present the decadal- to centennial-resolution Holocene lake-level curve of the Dead Sea. Then we determine the regional hydroclimatology that affected level variations. To achieve this goal we compare modern natural lake-level variations and instrumental rainfall records and quantify the hydrology relative to lake-level rise, fall, or stability. To quantify that relationship under natural conditions, rainfall data pre-dating the artificial Dead Sea level drop since the 1960s are used. In this respect, Jerusalem station offers the longest uninterrupted pre-1960s rainfall record and Jerusalem rains serve as an adequate proxy for the Dead Sea headwaters rainfall. Principal component analysis indicates that temporal variations of annual precipitation in all stations in Israel north of the current 200 mm yr−1 average isohyet during 1940–1990 are largely synchronous and in phase (∼70% of the total variance explained by PC1). This station also represents well northern Jordan and the area all the way to Beirut, Lebanon, especially during extreme drought and wet spells. We (a) determine the modern, and propose the past regional hydrology and Eastern Mediterranean (EM) climatology that affected the severity and length of droughts/wet spells associated with multiyear episodes of Dead Sea level falls/rises and (b) determine that EM cyclone tracks were different in average number and latitude in wet and dry years in Jerusalem. The mean composite sea level pressure and 500-mb height anomalies indicate that the potential causes for wet and dry episodes span the entire EM and are rooted in the larger-scale northern hemisphere atmospheric circulation. We also identified remarkably close association (within radiocarbon resolution) between climatic changes in the Levant, reflected by level changes, and culture shifts in this region.
Sediments from Lunkaransar dry lake in northwestern India reveal regional water table and lake level fluctuations over decades to centuries during the Holocene that are attributed to changes in the southwestern Indian monsoon rains. The lake levels were very shallow and fluctuated often in the early Holocene and then rose abruptly around 6300 carbon-14 years before the present (14C yr B.P.). The lake completely desiccated around 4800 (14)C yr B.P. The end of this 1500-year wet period coincided with a period of intense dune destabilization. The major Harrapan-Indus civilization began and flourished in this region 1000 years after desiccation of the lake during arid climate and was not synchronous with the lacustral phase.
Lake Lisan, the late Pleistocene precursor of the Dead Sea, existed from ∼70,000 to 15,000 yr B.P. It evolved through frequent water-level fluctuations, which reflected the regional hydrological and climatic conditions. We determined the water level of the lake for the time interval ∼55,000–15,000 cal yr B.P. by mapping offshore, nearshore, and fan-delta sediments; by application of sequence stratigraphy methods; and by dating with radiocarbon and U-series methods. During the studied time interval the lake-level fluctuated between ∼340 and 160 m below mean sea level (msl). Between 55,000 and 30,000 cal yr B.P. the lake evolved through short-term fluctuations around 280–290 m below msl, punctuated (at 48,000–43,000 cal yr B.P.) by a drop event to at least 340 m below msl. At ∼27,000 cal yr B.P. the lake began to rise sharply, reaching its maximum elevation of about 164 m below msl between 26,000 and 23,000 cal yr B.P., then it began dropping and reached 300 m below msl at ∼15,000 cal yr B.P. During the Holocene the lake, corresponding to the present Dead Sea, stabilized at ca. 400 m below msl with minor fluctuations. The hypsometric curve of the basin indicates that large changes in lake area are expected at above 403 and 385 m below msl. At these elevations the lake level is buffered. Lake Lisan was always higher than 380 m below msl, indicating a significantly large water contribution to the basin. The long and repetitious periods of stabilization at 280–290 m below msl during Lake Lisan time indicate hydrological control combined with the existence of a physical sill at this elevation. Crossing this sill could not have been achieved without a dramatic increase in the total water input to the lake, as occurred during the fast and intense lake rise from ∼280 to 160 m below msl at ∼27,000 cal yr B.P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.