Artificial lung (AL) membranes are used for blood oxygenation for patients undergoing open-heart surgery or acute lung failures. Current AL technology employs polypropylene and polymethylpentene membranes. Although effective, these membranes suffer from low biocompatibility, leading to undesired blood coagulation and hemolysis over a long term. In this work, we propose a new generation of AL membranes based on amphiphobic fluoropolymers. We employed poly(vinylidene-co-hexafluoropropylene), or PVDF-co-HFP, to fabricate macrovoid-free membranes with an optimal pore size range of 30–50 nm. The phase inversion behavior of PVDF-co-HFP was investigated in detail for structural optimization. To improve the wetting stability of the membranes, the fabricated membranes were coated using Hyflon AD60X, a type of fluoropolymer with an extremely low surface energy. Hyflon-coated materials displayed very low protein adsorption and a high contact angle for both water and blood. In the hydrophobic spectrum, the data showed an inverse relationship between the surface free energy and protein adsorption, suggesting an appropriate direction with respect to biocompatibility for AL research. The blood oxygenation performance was assessed using animal sheep blood, and the fabricated fluoropolymer membranes showed competitive performance to that of commercial polyolefin membranes without any detectable hemolysis. The data also confirmed that the bottleneck in the blood oxygenation performance was not the membrane permeance but rather the rate of mass transfer in the blood phase, highlighting the importance of efficient module design.
BACKGROUND: In vitro generation of three-dimensional vessel network is crucial to investigate and possibly improve vascularization after implantation in vivo. This work has the purpose of engineering complex tissue regeneration of a vascular network including multiple cell-type, an extracellular matrix, and perfusability for clinical application. METHODS: The two electrospun membranes bonded with the vascular network shape are cultured with endothelial cells and medium flow through the engineered vascular network. The flexible membranes are bonded by amine-epoxy reaction and examined the perfusability with fluorescent beads. Also, the perfusion culture for 7 days of the endothelial cells is compared with static culture on the engineered vascular network membrane. RESULTS: The engineered membranes are showed perfusability through the vascular network, and the perfused network resulted in more cell proliferation and variation of the shear stress-related genes expression compared to the static culture. Also, for the generation of the complex vascularized network, pericytes are co-cultured with the engineered vascular network, which results in the Collagen I is expressed on the outer surface of the engineered structure. CONCLUSION: This study is showing the perfusable in vitro engineered vascular network with electrospun membrane. In further, the 3D vascularized network module can be expected as a platform for drug screening and regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.