Indirect band gap semiconductor materials are routinely exploited in photonics, optoelectronics, and energy harvesting. However, their optical conversion efficiency is low, due to their poor optical properties, and a wide range of strategies, generally involving doping or alloying, has been explored to increase it, often, however, at the cost of changing their material properties and their band gap energy, which, in essence, amounts to changing them into different materials altogether. A key challenge is therefore to identify effective strategies to substantially enhance optical transitions at the band gap in these materials without sacrificing their intrinsic nature. Here, we show that this is indeed possible and that GaP can be transformed into a direct gap material by simple nanostructuring and surface engineering, while fully preserving its “identity”. We then distill the main ingredients of this procedure into a general recipe applicable to any indirect material and test it on AlAs, obtaining an increase of over 4 orders of magnitude in both emission intensity and radiative rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.