This study implies the significance of a trigeneration (TG) system, which converts a single fuel source into three useful energy products (i. e. power, heating, and cooling), and focuses on the simulation of a TG system with direct co-combustion of poultry wastes. The methodology is applied to a case study in northwest of Turkey to investigate how local poultry manure and environmental conditions can be effective in the production of energy. In addition, thermodynamic assessment of the system is performed, and the performance of the TG system is assessed by using energy, exergy, and parametric analysis methods. Poultry litter to coal ratio was 50% at the beginning, then poultry litter ratio in the mixture was increased to 90%, and this has led to less CO 2 emissions from the TG and combined heat and power systems co-firing with poultry litter. With rice husk however the consumptions of TG and combined heat and power increased from 6533-6624 tonne per year, and 6549-6640 tonne per year, respectively. As a result, co-combustion of poultry waste can be considered as the best environmentally-friendly remedy to dispose chicken farm wastes, while catering the energy demand of the facility.
In this study, it was aimed to control the formation of flow regimes planned to be in the gasification process on the model, and the hydrodynamic structure of the circulating fluidized bed gasifier was obtained using the MFIX program. For this purpose, a model was established before pilot scale systems and hydrodynamic modeling was performed by entering the system dimensions that were calculated analytically. Because it is a necessary condition from the point of view of the chemical reaction to ensure the fluid bed regime of the gasifier, which is designated as a solid model, is a necessary condition. For this reason, the system whose geometry was determined and semi-empirical modeling was performed was modeled under previously determined operating conditions using the PIC (Eulerian-Lagrangian) model in the MFIX package program. In this technique, while fluid behavior is resolved by the Euler structure, particle behaviour is considered by the Lagrangian structure. The numeral effects are in great arrangement with the empiric datum showing that MFIX-PIC methods are reasonable among concentrated gas-solid network simulation. The primary characteristics of gas-solid streams in CFB are qualitatively determined by an ordinary annular flux form inside the main bed. The pressure inclination formed in the gas phase inside the lower and upper zones of the CFB bed column indicated turbulent and irregular gas-solid streams in lower and upper zones. The increased superficial gas velocity conducts to a further dissymmetrical gas axial velocity model, which shows improved effect in the recycling frame for gas homogeneity due to the over gas velocity. The superficial gas velocity obtained as a result of the MFIX-PIC modelling was found to be 7m/s for 100 kWth gas yield in the gasifier. The superficial gas velocity is the most basic parameter to be used both in the experimental parameter and in the thermochemical simulation. CiteAltınsoy, Y., Keçeci, A., & Topal, H. (20**). Determination of the bed hydrodynamics by MFIX-PIC in the biomass gasification process of circulating fluidized bed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.