This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Caldera systems are often restless and experience pulses of uplift and subsidence, with a weak, but significant link to eruption. Characterizing the spatial and temporal patterns of deformation episodes provides insight into the processes responsible for unrest and the architecture of magmatic and hydrothermal systems. Here we combine interferometric synthetic aperture radar images with data from Global Positioning System and a network of seismometers at a continental rift caldera Corbetti, Ethiopia. We document inflation that started mid‐2009 and is ongoing as of 2017, with associated seismicity. We investigate the temporal evolution of the deformation source using a Hastings‐Metropolis algorithm to estimate posterior probability density functions for source model parameters and use the Akaike information criterion to inform model selection. Testing rectangular dislocation and point sources, we find a point source at a depth of 6.6 km (95% confidence: 6.3 − 6.8 km) provides the statistically justified fit. The location of this source is coincident with a conductive anomaly derived from magnetotelluric measurements. We use a joint inversion of two geodetic data sets to produce a time series, which shows a volume input of 1.0 × 107 m3/year. This is the first observation of a prolonged period of magma reservoir growth in the Main Ethiopian Rift and has implications for hazard assessment and monitoring. Corbetti is < 20 km from two major population centers and has estimated return periods of ∼500 and ∼900 years for lava flows and Plinian eruptions, respectively. Our results highlight the need for long‐term geodetic monitoring and the application of statistically robust methods to characterize deformation sources.
Measurements from GPS sites spanning the Ethiopian Highlands, Main Ethiopian Rift, and Somali Platform in Ethiopia and Eritrea show that present‐day finite strain rates throughout NE Africa can be approximated at the continent scale by opening on the MER. Most sites in the Ethiopian Highlands are consistent with the motion of the Nubian plate at the level of 1 mm/yr with 95% confidence. However, sites at least as far as 60 km west of the rift show higher velocities relative to the stable Nubian frame of 1–2 mm/yr, requiring a combination of localized and distributed deformation to accommodate the African extensional domain. Off‐rift velocities are consistent with ongoing strain related to either high gravitational potential energy or intrusive magmatism away from midrift magmatic segments either on the western rift margin or within the Ethiopian Highlands, especially when combined with likely rheological differences between the Ethiopian Rift and Highlands. Velocities from the Somali Platform are less well determined with uncertainties and residuals from a Somali frame definition at the level of 2–3 mm/yr but without spatially correlated residuals.
Geodetic observations in the Turkana Depression of southern Ethiopia and northern Kenya constrain the kinematic relay of extension from a single rift in Ethiopia to parallel rifts in Kenya and Uganda. Global Position System stations in the region record approximately 4.7 mm/year of total eastward extension, consistent with the ITRF14 Euler pole for Nubia‐Somalia angular velocity. Extension is partitioned into high strain rates on localized structures and lower strain rates in areas of elevated topography, as across the Ethiopian Plateau. Where high topography is absent, extension is relayed between the Main Ethiopian Rift and the Eastern Rift across the Turkana Depression exclusively through localized extension on and immediately east of Lake Turkana (up to 0.2 microstrain/year across Lake Turkana). The observed scaling and location of active extension in the Turkana Depression are inconsistent with mechanical models predicting distributed stretching due to either inherited lithospheric weakness or reactivated structures oblique to the present‐day extension direction.
Vertical GPS displacement time series from 16 continuous sites over a period from 2007 to 2014 are compared to time series of monthly averages of liquid water equivalent thickness from the Gravity Recovery and Climate Experiment and precipitation from the Climate Research Unit to investigate hydrologic loading in Ethiopia and Eritrea. The GPS vertical time series record the presence of one or two rainy seasons, the amplitude surface displacements in response to monsoon water load, and phases consistent with a purely elastic response to a water load that accumulates throughout the rainy period. Comparison of observed amplitudes to those calculated for an average Earth model shows no systematic weakness related to the rift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.