The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores, or comb jellies, have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here, we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well-recognized in ctenophores, many bilaterian neuron-specific genes and genes of “classical” neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.
Ctenophores are one of the most basally branching lineages of metazoans with the largest mitochondrial organelles in the animal kingdom. We sequenced the mitochondrial (mtDNA) genome from the Pacific cidipid ctenophore, Pleurobrachia bachei. The circular mitochondrial genome is 11,016 nts, with only 12 genes, and one of the smallest metazoan mtDNA genomes recorded. The protein coding genes are intronless cox1-3, cob, nad1, 3, 4, 4L and 5. The nad2 and 6 genes are represented as short fragments whereas the atp6 gene was found in the nuclear genome. Only the large ribosomal RNA subunit and 2 tRNAs were present with possibly the small subunit unidentifiable due to extensive fragmentation. The observed unique features of this mitochondrial genome suggest that nuclear and mitochondrial genomes have evolved at very different rates. This reduced mtDNA genome sharply contrasts with the very large sizes of mtDNA found in other basal metazoans including Porifera (sponges), and Placozoa (Trichoplax).
Abstract. The N-methyl-D-aspartate (NMDA) receptor belongs to the group of ionotropic glutamate receptors and has been implicated in synaptic plasticity, memory acquisition, and learning in both vertebrates and invertebrates, including molluscs. However, the molecular identity of NMDA-type receptors in molluscs remains unknown. Here, we cloned two NMDA-type receptors from the sea slug Aplysia californica, AcNR1-1 and AcNR1-2, as well as their homologs from the freshwater pulmonate snail Lymnaea stagnalis, LsNR1-1 and LsNR1-2. The cloned receptors contain a signal peptide, two extracellular segments with predicted binding sites for glycine and glutamate, three recognized transmembrane regions, and a fourth hydrophobic domain that makes a hairpin turn to form a pore-like structure. Phylogenetic analysis suggests that both the AcNR1s and LsNR1s belong to the NR1 subgroup of ionotrophic glutamate receptors. Our in situ hybridization data indicate highly abundant, but predominantly neuron-specific expression of molluscan NR1-type receptors in all central ganglia, including identified motor neurons in the buccal and abdominal ganglia as well as groups of mechanosensory cells. AcNR1 transcripts were detected extrasynaptically in the neurites of metacerebral cells of Aplysia. The widespread distribution of AcNR1 and LsNR1 transcripts also implies diverse functions, including their involvement in the organization of feeding, locomotory, and defensive behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.