Pepper plants containing the dominant A gene accumulate anthocyanin pigments in the foliage, flower and immature fruit. We previously mapped A to pepper chromosome 10 in the F(2) progeny of a cross between 5226 (purple-fruited) and PI 159234 (green-fruited) to a region that corresponds, in tomato, to the location of Petunia anthocyanin 2 ( An2), a regulator of anthocyanin biosynthesis. This suggested that A encodes a homologue of Petunia An2. Using the sequences of An2 and a corresponding tomato expressed sequence tag, we isolated a pepper cDNA orthologous to An2 that cosegregated with A. We subsequently determined the expression of A by Northern analysis, using RNA extracted from fruits, flowers and leaves of 5226 and PI 159234. In 5226, expression was detected in all stages of fruit development and in both flower and leaf. In contrast, A was not expressed in the sampled tissues in PI 159234. Genomic sequence comparison of A between green- and purple-fruited genotypes revealed no differences in the coding region, indicating that the lack of expression of A in the green genotypes can be attributed to variation in the promoter region. By analyzing the expression of the structural genes in the anthocyanin biosynthetic pathway in 5226 and PI 159234, it was determined that, similar to Petunia, the early genes in the pathway are regulated independently of A, while expression of the late genes is A-dependent.
(M.M.J.) Capsaicinoids are the pungent alkaloids that give hot peppers (Capsicum spp.) their spiciness. While capsaicinoids are relatively simple molecules, much is unknown about their biosynthesis, which spans diverse metabolisms of essential amino acids, phenylpropanoids, benzenoids, and fatty acids. Pepper is not a model organism, but it has access to the resources developed in model plants through comparative approaches. To aid research in this system, we have implemented a comprehensive model of capsaicinoid biosynthesis and made it publicly available within the SolCyc database at the SOL Genomics Network (http://www.sgn.cornell.edu). As a preliminary test of this model, and to build its value as a resource, targeted transcripts were cloned as candidates for nearly all of the structural genes for capsaicinoid biosynthesis. In support of the role of these transcripts in capsaicinoid biosynthesis beyond correct spatial and temporal expression, their predicted subcellular localizations were compared against the biosynthetic model and experimentally determined compartmentalization in Arabidopsis (Arabidopsis thaliana). To enable their use in a positional candidate gene approach in the Solanaceae, these genes were genetically mapped in pepper. These data were integrated into the SOL Genomics Network, a clade-oriented database that incorporates community annotation of genes, enzymes, phenotypes, mutants, and genomic loci. Here, we describe the creation and integration of these resources as a holistic and dynamic model of the characteristic specialized metabolism of pepper.
An advanced backcross QTL study was performed in pepper using a cross between the cultivated species Capsicum annuum cv. Maor and the wild C. frutescens BG 2816 accession. A genetic map from this cross was constructed, based on 248 BC(2) plants and 92 restriction fragment length polymorphism (RFLP) markers distributed throughout the genome. Ten yield-related traits were analyzed in the BC(2) and BC(2)S(1) generations, and a total of 58 quantitative trait loci (QTLs) were detected; the number of QTLs per trait ranged from two to ten. Most of the QTLs were found in 11 clusters, in which similar QTL positions were identified for multiple traits. Unlike the high percentage of favorable QTL alleles discovered in wild species of tomato and rice, only a few such QTL alleles were detected in BG 2816. For six QTLs (10%), alleles with effects opposite to those expected from the phenotype were detected in the wild species. The use of common RFLP markers in the pepper and tomato maps enabled possible orthologous QTLs in the two species to be determined. The degree of putative QTL orthology for the two main fruit morphology traits-weight and shape-varied considerably. While all eight QTLs identified for fruit weight in this study could be orthologous to tomato fruit weight QTLs, only one out of six fruit shape QTLs found in this study could be orthologous to tomato fruit shape QTLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.