We have previously found that uridine 5′-triphosphate (UTP) significantly reduced cardiomyocyte death induced by hypoxia via activating P2Y 2 receptors. To explore the effect of UTP following myocardial infarction (MI) in vivo we studied four groups: sham with or without LAD ligation, injected with UTP (0.44 µg/kg i.v.) 30 min before MI, and UTP injection (4.4 µg/kg i.v.) 24 h prior to MI. Left ventricular end diastolic area (LVEDA), end systolic area (LVESA) fractional shortening (FS), and changes in posterior wall (PW) thickness were performed by echocardiography before and 24 h after MI. In addition, we measured different biochemical markers of damage and infarct size using Evans blue and TTC staining. The increase in LVEDA and LVESA of the treated animals was significantly smaller when compared to the MI rats (p < 0.01). Concomitantly, FS was higher in groups pretreated with UTP 30 min or 24 h (56 ± 14.3 and 36.7 ± 8.2%, p < 0.01, respectively). Ratio of infarct size to area at risk was smaller in the UTP pretreated hearts than MI rats (22.9 ± 6.6, 23.1 ± 9.1%, versus 45.4 ± 7.6%, respectively, p < 0.001). Troponin T and ATP measurements, demonstrated reduced myocardial damage. Using Rhod-2-AM loaded cardiomyocytes, we found that UTP reduced mitochondrial calcium levels following hypoxia. In conclusion, early or late UTP preconditioning is effective, demonstrating reduced infarct size and superior myocardial function. The resulting cardioprotection following UTP treatment post ischemia demonstrates a reduction in mitochondrial calcium overload, which can explain the beneficial effect of UTP.
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-ĸ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IĸB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-ĸB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.