SUMMARY
The ability to map patterns of gene expression noninvasively in living animals could have impact in many areas of biology. Reporter systems compatible with magnetic resonance imaging (MRI) could be particularly valuable, but existing strategies tend to lack sensitivity or specificity. Here we address the challenge of MRI-based gene mapping using the reporter enzyme secreted alkaline phosphatase (SEAP), in conjunction with a water soluble metalloporphyrin contrast agent. SEAP cleaves the porphyrin into an insoluble product that accumulates at sites of enzyme expression and can be visualized by MRI and optical absorbance. The contrast mechanism functions in vitro, in brain slices, and in animals. The system also provides the possibility of readout both in the living animal and by post mortem histology, and it notably does not require intracellular delivery of the contrast agent. The solubility switch mechanism used to detect SEAP could be adapted for imaging of additional reporter enzymes or endogenous targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.