A biosimilar is a biological medicinal product that is comparable to a reference medicinal product in terms of quality, safety, and efficacy. SB4 was developed as a biosimilar to Enbrel® (etanercept) and was approved as Benepali®, the first biosimilar of etanercept licensed in the European Union (EU). The quality assessment of SB4 was performed in accordance with the ICH comparability guideline and the biosimilar guidelines of the European Medicines Agency and Food and Drug Administration. Extensive structural, physicochemical, and biological testing was performed with state-of-the-art technologies during a side-by-side comparison of the products. Similarity of critical quality attributes (CQAs) was evaluated on the basis of tolerance intervals established from quality data obtained from more than 60 lots of EU-sourced and US-sourced etanercept. Additional quality assessment was focused on a detailed investigation of immunogenicity-related quality attributes, including hydrophobic variants, high-molecular-weight (HMW) species, N-glycolylneuraminic acid (NGNA), and α-1,3-galactose. This comprehensive characterization study demonstrated that SB4 is highly similar to the reference product, Enbrel®, in structural, physicochemical, and biological quality attributes. In addition, the levels of potential immunogenicity-related quality attributes of SB4 such as hydrophobic variants, HMW aggregates, and α-1,3-galactose were less than those of the reference product.
The productivity of mammalian cell culture expression systems is critically important to the production of biopharmaceuticals. In this study, a high-producing Chinese hamster ovary cell culture which was transfected with the apoptosis inhibitor Bcl-X(L) gene was compared to a low-producing control that was not transfected. Shotgun proteomics was used to compare the high and low-producing fed-batch cell cultures at different growth time points. The goals of this study were twofold; it would be of value to find a biomarker that could predict cell lines with higher growth efficiency and to gain mechanistic insights into the effects of the introduction of a foreign gene that is known to have growth regulating properties in human cells. A total of 392 proteins were identified in this study, and 32 of these proteins were determined to be differentially expressed. In the high-producing cell culture, several proteins related to protein metabolism were upregulated, such as eukaryotic translation initiation factor 3 and ribosome 40S. In addition, several intermediate filament proteins such as vimentin and annexin, as well as histone H1.2 and H2A, were downregulated in the high producer. The expression of these proteins may be indicative of cellular productivity. A growth inhibitor, galectin-1, was downregulated in the high producer, which may be linked to the expression of Bcl-X(L). The molecular chaperone BiP was upregulated significantly in the high producer and may indicate an unfolded protein response due to endoplasmic reticulum (ER) stress. Several proteins involved in regulation of the cell cycle such as RACK1 and GTPase Ran were found to be differentially expressed, which may be due to a differentially controlled cell cycle between low- and high-producing cell cultures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.