Imputation of missing attribute values in medical datasets for extracting hidden knowledge from medical datasets is an interesting research topic of interest which is very challenging. One cannot eliminate missing values in medical records. The reason may be because some tests may not been conducted as they are cost effective, values missed when conducting clinical trials, values may not have been recorded to name some of the reasons. Data mining researchers have been proposing various approaches to find and impute missing values. In this paper, we propose a novel imputation approach for fixing missing values. The approach is based on clustering concept and aims at dimensionality reduction of the records. This serves the need to use the same records of lower dimension to be used for clustering and classification of medical records to arrive at accurate decision prediction. The case study discussed shows that the missing values can be fixed and imputed efficiently by achieving dimensionality reduction. The proposed approach for imputation also achieved dimensionality reduction to perform efficient prediction of missing values.
Imputation of missing attribute values in medical datasets for extracting hidden knowledge from medical datasets is an interesting research topic of interest which is very challenging. One cannot eliminate missing values in medical records. The reason may be because some tests may not been conducted as they are cost effective, values missed when conducting clinical trials, values may not have been recorded to name some of the reasons. Data mining researchers have been proposing various approaches to find and impute missing values to increase classification accuracies so that disease may be predicted accurately. In this paper, we propose a novel imputation approach for imputation of missing values and performing classification after fixing missing values. The approach is based on clustering concept and aims at dimensionality reduction of the records. The case study discussed shows that missing values can be fixed and imputed efficiently by achieving dimensionality reduction. The importance of proposed approach for classification is visible in the case study which assigns single class label in contrary to multi-label assignment if dimensionality reduction is not performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.