BackgroundThe purpose of this study is to evaluate the wear and fracture strength of crowns and three-unit partial fixed dental prosthesis (FDP) fabricated using by Bruxzir and Incoris TZI as recently introduced monolithic zirconia materials.MethodsA total of sixteen crowns and sixteen three-unit FDPs were fabricated using Bruxzir and Incoris TZI (n = 8). All specimens were subjected to a 2-body wear test in a dual axis chewing simulator for 1,200,000 loading cycles against steatite antagonist balls. The fracture strength and volumetric loss were recorded. The obtained data were statistically analyzed by 2-way ANOVA testing (α = 0.05).ResultsThe mean volumetric loss of the crowns was higher than that of the three-unit FDPs (p < 0.05). Of the two monolithic systems, Incoris TZI exhibited more wear than Bruxzir. The fracture strengths of Bruxzir crowns and FDPs were found to be higher than those of the crowns and FDPs fabricated with Incoris TZI (p < 0.05).ConclusionIn in vitro test conditions, Bruxzir and Incoris TZI monolithic zirconia systems are fracture-resistant for the crown and FDP application against physiologic chewing forces owing to dynamic aging. Among newly developed monolithic zirconia materials, Bruxzir is found to be more resistant to fracture compared to the Incoris TZI.
BackgroundThe purpose of this study was to investigate the effects of staining solutions and surface finishing on the colour stability and translucency of hybrid ceramic (HC) and resin nanoceramic (RNC) materials.MethodsTwenty four groups consisting of 10 specimens (240 specimens in total) were created out of HC and RNC, including six groups to be stored in distilled water served as the controls groups. The Vita Enamic technical set, Shofu polishers, medium and fine rubber wheels and Sof-Lex polishing discs were used as polishing instruments. Cola, tea, and coffee were used as staining solutions. The colour differences (∆E*) and translucency parameter (TP) were evaluated by a spectrophotometer. Data were analysed by a One-way Analysis of Variance (ANOVA) and Mann-Whitney U test.ResultsThere was a statistically significant difference between the ∆E* values of the HC specimens in the coffee groups and the ∆E* values of the other HC groups (p < 0.05). The ∆E* values of the RNC specimens in the coffee and tea groups were not different from the specimens in the cola groups (p > 0.05). The TP values of the polished groups were higher than the Sof-Lex groups and the Shofu groups on both HC and RNC materials (p < 0.05).ConclusionsIncreased ∆E* values were observed in HC specimens stored in a coffee solution compared to the specimens stored in a tea or cola solution. Both of the RNC specimens stored in coffee and tea had higher ∆E* values than the RNC specimens stored in the cola. The TP values of both HC and RNC specimens stored in the coffee solution decreased.
ObjectiveAlthough the effectiveness of chemical cleansing against Candida albicans biofilm has been shown, the effective concentration of denture cleanser tablets has not been studied. The aim of this study was to assess the effect of three denture materials against Candida albicans biofilm and to determine effective concentrations of denture cleanser tablets.Material and methodsThe surface-roughness of Acron-hi™, QC-20™ and Deflex™ (n=45 per resin) resins was standardized by using a profilometer and their contact angle or surface free energy was calculated. C. albicans biofilm was formed on all three resins and were treated with Polident 3 min™, Corega™ and Fittydent™ cleanser solutions at various concentrations and both resin-biofilm and cleanser-biofilm interest were determined by using a MTT protocol according to the European Committee on Antimicrobial Susceptibility Testing's antifungal susceptibility testing (AFST-EUCAST). Scanning electron microscopy was used to compare the efficacy of different resin materials against C. albicans biofilm. Anticandidal activity and surface free energy statistical parameters were calculated by using 3-way and 1-way ANOVA, respectively (p<0.05).ResultsPolident 3 min™ and Corega™ tablets significantly inhibited (p<0.05) the proliferation of C. albicans against all denture resins at 27-37 mg/mL. Scanning electron microscopy results indicated that there was no significant difference among resin specimens regarding biofilm formation on dentures. We failed to find a significant relationship between surface free energy and the anticandidal effect of resin types. However, the polarity value of the resins was statistically associated with their anticandidal activity.ConclusionsThe polarity of the resins, the concentrations of tablets and the chemical content of the cleanser may directly affect C. albicans biofilm formations. Polident 3 min™ and Corega™ tablets should be suggested for patients who use any denture resin types, whereas the Fittydent™ tablet should only be proposed for those who use Deflex™, when two tablets are dropped into 150 mL water.
To improve the flexural strength and flexural modulus of polymethyl methacrylate (PMMA), copolymerization of PMMA with 10, 20, 30, and 40% (v/v) of either ethyl-methacrylate, butyl-methacrylate (BMA), or isobutyl-methacrylate (IBMA) was carried out. Test specimens were fabricated from heat-cured resin. The flexural strength was measured using a 3-point bending test. The chemical characterization and the copolymerization mechanisms of the copolymer resins were confirmed by 1 H-NMR and FTIR. The flexural strength data were analyzed by applying two-way variance analysis. PMMA was reinforced by ethyl-methacrylate, BMA and IBMA copolymerization. Flexural strengths of the BMA and IBMA copolymers were significantly higher than those of the control group. Maximum flexural strength and modulus resulted from a 40% concentration of IBMA. The flexural strength and modulus values of all copolymer groups were found to be higher than those of the control group. The flexural moduli of the BMA and ethyl-methacrylate groups were similar to those of the control.
PURPOSE The present study aimed to evaluate the clinical applicability of monolithic zirconia (MZ) crowns of different thickness via determination of fracture resistance and marginal fit. MATERIALS AND METHODS MZ crowns with 0.5, 0.8, 1.0, and 1.5 mm thickness and porcelain fused to metal (PFM) crowns were prepared, ten crowns in each group. Marginal gaps of the crowns were measured. All crowns were aged with thermal cycling (5 – 55℃/10000 cycle) and chewing simulator (50 N/1 Hz/lateral movement: 2 mm, mouth opening: 2 mm/240000 cycles). After aging, fracture resistance of crowns was determined. Statistical analysis was performed with one-way ANOVA and Tukey's HDS post hoc test. RESULTS Fracture loads were higher in the PFM and 1 mm MZ crowns compared to 0.5 mm and 0.8 mm crowns. 1.5 mm MZ crowns were not broken even with the highest force applied (10 kN). All marginal gap values were below 86 µm even in the PFM crowns, and PFM crowns had a higher marginal gap than the MZ crowns. CONCLUSION The monolithic zirconia exhibited high fracture resistance and good marginal fit even with the 0.5 mm thickness, which might be used with reduced occlusal thickness and be beneficial in challengingly narrow interocclusal space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.