The high-quality regulatory support for the use of plant genome editing technology is an urgent scientific and practical task of modern agriculture. Currently, the status of plants obtained using genomic editing (GE) technologies is not defined in Russian legislation. The article describes the principles and mechanism of CRISPR/Cas9 technology, and discusses the biological safety of the GE-plants. Fundamentally different approaches to genetically modified (GM) and GE-plants in the world are analyzed. We discuss the problems and contradictions of extending the GM-plants legal regulation to GE-plants. In particular, the European Court of Justice decision that extended the European GM-plants legislation for GE-plants. It is proposed to determine the legal status of GE-plants in Russian legislation, taking into account existing international practices, and protect the interests of the government in the field of biological and food security.
Angiosperm plants reproduce both sexually and asexually (by apomixis). In apomictic plants, the embryo and endosperm develop without fertilization. Modern maize seems to have a broken apomixis-triggering mechanism, which still works in Tripsacum and in Tripsacum–maize hybrids. For the first time, maize lines characterized by pronounced and inheritable high-frequency maternal parthenogenesis were generated 40 years ago, but there are no data on gene expression in parthenogenic maize proembryos. Here we examined for the first time gene expression in parthenogenic proembryos isolated from unpollinated embryo sacs (ESs) of a parthenogenic maize line (AT-4). The DNA-methylation genes (dmt103, dmt105) and the genes coding for the chromatin-modifying enzymes (chr106, hdt104, hon101) were expressed much higher in parthenogenic proembryos than in unpollinated ESs. The expression of the fertilization-independent endosperm (fie1) genes was found for the first time in parthenogenic proembryos and unpollinated ESs. In parthenogenic proembryos, the Zm_fie2 gene was expressed up to two times higher than it was expressed in unpollinated ESs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.