The mechanisms regulating the generation of cell diversity in the mammalian cerebral cortex are beginning to be elucidated. In that regard, Hairy/Enhancer of split (Hes) 1 and 5 are basic helix-loop-helix (bHLH) factors that inhibit the differentiation of pluripotent cortical progenitors into neurons. In contrast, a related Hes family member termed Hes6 promotes neurogenesis. It is shown here that knockdown of endogenous Hes6 causes supernumerary cortical progenitors to differentiate into cells that exhibit an astrocytic morphology and express the astrocyte marker protein GFAP. Conversely, exogenous Hes6 expression in cortical progenitors inhibits astrocyte differentiation. The negative effect of Hes6 on astrocyte differentiation is independent of its ability to promote neuronal differentiation. We also show that neither its proneuronal nor its anti-gliogenic functions appear to depend on Hes6 ability to bind to DNA via the basic arm of its bHLH domain. Both of these activities require Hes6 to be localized to nuclei, but only its anti-gliogenic function depends on two short peptides, LNHLL and WRPW, that are conserved in all Hes6 proteins. These findings suggest that Hes6 is an important regulator of the neurogenic phase of cortical development by promoting the neuronal fate while suppressing astrocyte differentiation. They suggest further that separate molecular mechanisms underlie the proneuronal and anti-gliogenic activities of Hes6 in cortical progenitor cells.
Hairy/Enhancer of split (Hes) 6 is a basic helix-loop-helix protein that interacts with the transcriptional co-repressor, Groucho, and antagonizes the neural functions of the Notch pathway. More specifically, mouse Hes6 regulates cerebral corticogenesis by promoting neurogenesis and suppressing astrocyte differentiation. The molecular mechanisms underlying the anti-astrogenic function of Hes6 are poorly defined. Here we describe studies aimed at testing whether Hes6 inhibits astrocyte differentiation by antagonizing the transcription repression activity of Notch-activated Hes family members like Hes1. It is reported that Hes6 preferentially forms homodimers. Heterodimerization with Hes1 is antagonized in part by a conserved N-terminal patch of negatively charged residues. Mutation of this motif enhances heterodimerization with Hes1 and increases Hes6 ability to antagonize Hes1-mediated transcriptional repression. However, this mutation does not increase, but instead decreases, the antiastrogenic activity of Hes6. It is shown further that Hes6 harbors a second conserved sequence, a C-terminal SPXXSP motif. This sequence is phosphorylated by the mitogen activated protein kinase pathway and its mutation disrupts the anti-astrogenic activity of Hes6 without affecting its ability to suppress Hes1. Together, these observations suggest that Hes6 homodimers regulate astrocyte differentiation through mechanisms that depend on the phosphorylation of Hes6 C-terminal domain but are independent of its ability to suppress Hes1-mediated transcriptional repression. Keywords: astrocyte differentiation, cerebral cortex, Groucho, Hes, neurogenesis, Notch. In contrast to Hes1/Hes5, a related family member, Hes6, is not activated in response to Notch signaling and promotes, rather than inhibiting, neuronal differentiation in murine retinal explants (Bae et al. 2000), Xenopus neural plate (Koyano-Nakagawa et al. 2000), and cortical neural progenitor cells (Gratton et al. 2003;Jhas et al. 2006 These authors contributed equally to this study.Abbreviations used: bHLH, basic helix-loop-helix; CK2, protein kinase CK2; EMSA, electrophoretic mobility shift assay; ESE, Enhancer of split E; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; Gro, Groucho; HA, hemagglutinin; HEK, human embryonic kidney; Hes, Hairy/Enhancer of split; MAPK, mitogen activated protein kinase; Ngn, neurogenin; TLE, transducin-like Enhancer of split.
BackgroundTranscriptional co-repressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate the expression of a variety of genes and are involved in numerous developmental processes in both invertebrate and vertebrate species. More specifically, Gro/TLE1 participates in mechanisms that inhibit/delay the differentiation of cerebral cortex neural progenitor cells into neurons during mammalian forebrain development. The anti-neurogenic function of Gro/TLE1 depends on the formation of protein complexes with specific DNA-binding transcription factors that engage Gro/TLE1 through WRP(W/Y) sequences. Interaction with those transcription partners results in Gro/TLE1 recruitment to selected DNA sites and causes increased Gro/TLE1 phosphorylation. The physiological significance of the latter event, termed “cofactor-activated phosphorylation,” had not been determined. Therefore, this study aimed at clarifying the role of cofactor-activated phosphorylation in the anti-neurogenic function of Gro/TLE1.Methods and Principal FindingsA combination of site-directed mutagenesis, mass spectrometry, biochemistry, primary cell culture, and immunocytochemical assays was utilized to characterize point mutations of Ser-286, a residue that is phosphorylated in vivo and is located within the serine/proline-rich (SP) domain of Gro/TLE1. Mutation of Ser-286 to alanine or glutamic acid does not perturb the interaction of Gro/TLE1 with DNA-binding partners, including the basic helix-loop-helix transcription factor Hes1, a prototypical anti-neurogenic WRP(W/Y) motif protein. Ser-286 mutations do not prevent the recruitment of Gro/TLE1 to DNA, but they impair cofactor-activated phosphorylation and weaken the interaction of Gro/TLE1 with chromatin. These effects are correlated with an impairment of the anti-neurogenic activity of Gro/TLE1. Similar results were obtained when mutations of Ser-289 and Ser-298, which are also located within the SP domain of Gro/TLE1, were analyzed.ConclusionBased on the positive correlation between Gro/TLE1 cofactor-activated phosphorylation and ability to inhibit cortical neuron differentiation, we propose that hyperphosphorylation induced by cofactor binding plays a positive role in the regulation of Gro/TLE1 anti-neurogenic activity.
Glioblastoma is the most common and aggressive brain tumor, with a subpopulation of stem-like cells thought to mediate its recurring behavior and therapeutic resistance. The epithelial-mesenchymal transition (EMT) inducing factor Zeb1 was linked to tumor initiation, invasion, and resistance to therapy in glioblastoma, but how Zeb1 functions at molecular level and what genes it regulates remain poorly understood. Contrary to the common view that EMT factors act as transcriptional repressors, here we show that genome-wide binding of Zeb1 associates with both activation and repression of gene expression in glioblastoma stem-like cells. Transcriptional repression requires direct DNA binding of Zeb1, while indirect recruitment to regulatory regions by the Wnt pathway effector Lef1 results in gene activation, independently of Wnt signaling. Amongst glioblastoma genes activated by Zeb1 are predicted mediators of tumor cell migration and invasion, including the guanine nucleotide exchange factor Prex1, whose elevated expression is predictive of shorter glioblastoma patient survival. Prex1 promotes invasiveness of glioblastoma cells highlighting the importance of Zeb1/Lef1 gene regulatory mechanisms in gliomagenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.