Metalenses can achieve diffraction-limited focusing via localized phase modification of the incoming light beam. However, the current metalenses face to the restrictions on simultaneously achieving large diameter, large numerical aperture, broad working bandwidth and the structure manufacturability. Herein, we present a kind of metalenses composed of concentric nanorings that can address these restrictions using topology optimization approach. Compared to existing inverse design approaches, the computational cost of our optimization method is greatly reduced for large-size metalenses. With its design flexibility, the achieved metalens can work in the whole visible range with millimeter size and a numerical aperture of 0.8 without involving high-aspect ratio structures and large refractive index materials. Electron-beam resist PMMA with a low refractive index is directly used as the material of the metalens, enabling a much more simplified manufacturing process. Experimental results show that the imaging performance of the fabricated metalens has a resolution better than 600 nm corresponding to the measured FWHM of 745 nm.
Metalens, composed of arrays of nano-posts, is an ultrathin planar optical element used for constructing compact optical systems which can achieve high-performance optical imaging by wavefront modulating. However, the existing achromatic metalenses for circular polarization possess the problem of low focal efficiency, which is caused by the low polarization conversion efficiencies of the nano-posts. This problem hinders the practical application of the metalens. Topology optimization is an optimization-based design method that can effectively extend the degree of design freedom, allowing the phases and polarization conversion efficiencies of the nano-posts to be taken into account simultaneously in the optimization procedures. Therefore, it is used to find geometrical configurations of the nano-posts with suitable phase dispersions and maximized polarization conversion efficiencies. An achromatic metalens has a diameter of 40 μm. The average focal efficiency of this metalens is 53% in the spectrum of 531 nm to 780 nm by simulation, which is higher than the previously reported achromatic metalenses with average efficiencies of 20~36%. The result shows that the introduced method can effectively improve the focal efficiency of the broadband achromatic metalens.
The metal–insulator–metal (MIM) waveguide, which can directly couple free space photons, acts as an important interface between conventional optics and subwavelength photoelectrons. The reason for the difficulty of this optical coupling is the mismatch between the large wave vector of the MIM plasmon mode and photons. With the increase in the wave vector, there is an increase in the field and Ohmic losses of the metal layer, and the strength of the MIM mode decreases accordingly. To solve those problems, this paper reports on inversely designed nanoantennas that can couple the free space and MIM waveguide and efficiently excite the MIM plasmon modes at multiple wavelengths and under oblique angles. This was achieved by implementing an inverse design procedure using a topology optimization approach. Simulation analysis shows that the coupling efficiency is enhanced 9.47-fold by the nanoantenna at the incident wavelength of 1338 nm. The topology optimization problem of the nanoantennas was analyzed by using a continuous adjoint method. The nanoantennas can be inversely designed with decreased dependence on the wavelength and oblique angle of the incident waves. A nanostructured interface on the subwavelength scale can be configured in order to control the refraction of a photonic wave, where the periodic unit of the interface is composed of two inversely designed nanoantennas that are decoupled and connected by an MIM waveguide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.