Growing evidence from both epidemiology and basic science suggest an inverse association between Alzheimer’s disease (AD) and cancer. We examined the genetic relationship between AD and various cancer types using GWAS summary statistics from the IGAP and GAME-ON consortia. Sample size ranged from 9,931 to 54,162; SNPs were imputed to the 1000 Genomes European panel. Our results based on cross-trait LD Score regression showed a significant positive genetic correlation between AD and five cancers combined (colon, breast, prostate, ovarian, lung; rg = 0.17, P = 0.04), and specifically with breast cancer (ER-negative and overall; rg = 0.21 and 0.18, P = 0.035 and 0.034) and lung cancer (adenocarcinoma, squamous cell carcinoma and overall; rg = 0.31, 0.38 and 0.30, P = 0.029, 0.016, and 0.006). Estimating the genetic correlation in specific functional categories revealed mixed positive and negative signals, notably stronger at annotations associated with increased enhancer activity. This suggests a role of gene expression regulators in the shared genetic etiology between AD and cancer, and that some shared variants modulate disease risk concordantly while others have effects in opposite directions. Due to power issues, we did not detect cross-phenotype associations at individual SNPs. This genetic overlap is not likely driven by a handful of major loci. Our study is the first to examine the co-heritability of AD and cancer leveraging large-scale GWAS results. The functional categories highlighted in this study need further investigation to illustrate the details of the genetic sharing and to bridge between different levels of associations.
IntroductionDisruption of lipid metabolism is implicated in gestational diabetes (GDM). However, prospective studies on lipidomics and GDM risk in race/ethnically diverse populations are sparse. Here, we aimed to (1) identify lipid networks in early pregnancy to mid-pregnancy that are associated with subsequent GDM risk and (2) examine the associations of lipid networks with glycemic biomarkers to understand the underlying mechanisms.Research design and methodsThis study included 107 GDM cases confirmed using the Carpenter and Coustan criteria and 214 non-GDM matched controls from the National Institute of Child Health and Human Development Fetal Growth Studies-Singleton cohort, untargeted lipidomics data of 420 metabolites (328 annotated and 92 unannotated), and information on glycemic biomarkers in maternal plasma at visit 0 (10–14 weeks) and visit 1 (15–26 weeks). We constructed lipid networks using weighted correlation network analysis technique. We examined prospective associations of lipid networks and individual lipids with GDM risk using linear mixed effect models. Furthermore, we calculated Pearson’s partial correlation for GDM-related lipid networks and individual lipids with plasma glucose, insulin, C-peptide and glycated hemoglobin at both study visits.ResultsLipid networks primarily characterized by elevated plasma diglycerides and short, saturated/low unsaturated triglycerides and lower plasma cholesteryl esters, sphingomyelins and phosphatidylcholines were associated with higher risk of developing GDM (false discovery rate (FDR) <0.05). Among individual lipids, 58 metabolites at visit 0 and 96 metabolites at visit 1 (40 metabolites at both time points) significantly differed between women who developed GDM and who did not (FDR <0.05). Furthermore, GDM-related lipid networks and individual lipids showed consistent correlations with maternal glycemic markers particularly in early pregnancy at visit 0.ConclusionsPlasma lipid metabolites in early pregnancy both individually and interactively in distinct networks were associated with subsequent GDM risk in race/ethnically diverse US women. Future research is warranted to assess lipid metabolites as etiologic markers of GDM.
Purpose: Erythropoietic protoporphyria (EPP), characterized by painful cutaneous photosensitivity, results from pathogenic variants in ferrochelatase (FECH). For 96% of patients, EPP results from coinheriting a rare pathogenic variant in trans of a common hypomorphic variant c.315–48T>C (minor allele frequency 0.05). The estimated prevalence of EPP derived from the number of diagnosed individuals in Europe is 0.00092%, but this may be conservative due to underdiagnosis. No study has estimated EPP prevalence using large genetic datasets. Methods: Disease-associated FECH variants were identified in the UK Biobank, a dataset of 500,953 individuals including 49,960 exome sequences. EPP prevalence was then estimated. The association of FECH variants with EPP-related traits was assessed. Results: Analysis of pathogenic FECH variants in the UK Biobank provides evidence that EPP prevalence is 0.0059% (95% CI: 0.0042%−0.0076%), 1.7–3.0 times more common than previously thought in the UK. In homozygotes for the common c.315–48T>C FECH variant, there was a novel decrement in both erythrocyte mean corpuscular volume (MCV) and hemoglobin. Conclusion: The prevalence of EPP has been underestimated secondary to underdiagnosis. The common c.315–48T>C allele is associated with both MCV and hemoglobin, an association that could be important both for those with and without EPP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.