Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.
In 2019, Taiwan completed its first thorough heavy metal investigation of irrigation canal sediments by this study with the support of Taiwan Environmental Protection Administration. Box-and-whisker plots were used to analyze the sediment distribution and to define metal concentrations. Possible metal pollution sources, the polluted agricultural land, irrigation area, and water sources were also evaluated using spatial analysis to understand the possible causes of sediment pollution. Results showed that the main heavy metal in agricultural land was Cu, found in 77% of contaminated agricultural land sites. Most sites with Cu pollution in sediments were in Taoyuan City and Changhua County. The heavy metals present in the sediment pollution sites in Taoyuan were consistent with those of possible pollution sources upstream, namely, Cr, Cu, and Pb. The main heavy metals in sediment pollution sites in Changhua were Cr, Cu, Ni, Pb, and Zn, whereas those for the polluted agricultural land sites were Cr, Cu, Ni, and Zn, without Pb. The main irrigation water sources in Changhua include drainages and rivers, with some receiving most wastewater pollution mass of release of Changhua, and functions as an irrigation water source with a high release mass in Cr, Cu, Ni and Zn. These findings indicate that the sites of sediment pollution, sites of polluted agricultural land, and the sources of pollution share corresponding heavy metal characteristics. Therefore, in Changhua, the sediments were polluted mainly because (1) the irrigation canals received the highest masses of pollutant releases into drainage wastewater of the county; and (2) the return flow from irrigation and the illegal discharge of wastewater. The preliminary assessment results for sediment pollution in Taoyuan also suggest that the main causes may be irrigation by polluted rivers or drainages and return flows.
In this paper, we propose a inductive line tunneling FET using Epitaxial Tunnel Layer with Ge-Source and Charge Enhancement Insulation (CEI ETL GS-iTFET). The CEI ETL GS-iTFET allows full overlap between the gate and source regions, thereby enhancing the line tunneling. In addition, a germanium layer is introduced on the source side to form a heterojunction, effectively improving the device's conduction current. An ETL is incorporated to combat tunneling leakage, resulting in a steeper subthreshold swing. Furthermore, a CEI consisting of Si3N4 is introduced between the germanium source and the Schottky metal, which effectively reduces carrier losses in the inversion layer and improves the overall device performance. This study presents a calibration-based approach to simulations, taking into account practical process considerations. Simulation results show that at VD = 0.2 V, the CEI ETL GS-iTFET achieves an average subthreshold swing (SSavg) of 30.5 mV/dec, an Ion of 3.12x10-5 A/μm and an Ion/Ioff ratio of 1.81x1010. These results demonstrate a significantly low subthreshold swing and a high current ratio of about 1010. In addition, the proposed device eliminates the need for multiple implantation processes, resulting in significant manufacturing cost reductions. As a result, the CEI ETL GS-iTFET shows remarkable potential in future low-power device competition.
In this paper, we propose an inductive line tunneling FET using Epitaxial Tunnel Layer with Ge-Source and Charge Enhancement Insulation (CEI ETL GS-iTFET). The CEI ETL GS-iTFET allows full overlap between the gate and source regions, thereby enhancing the line tunneling. In addition, a germanium layer is introduced on the source side to form a heterojunction, effectively improving the device's conduction current. An ETL is incorporated to combat point tunneling leakage, resulting in a steeper subthreshold swing. Furthermore, a CEI consisting of Si3N4 is introduced between the germanium source and the Schottky metal, which effectively reduces carrier losses in the inversion layer and improves the overall device performance. This study presents a calibration-based approach to simulations, taking into account practical process considerations. Simulation results show that at VD = 0.2 V, the CEI ETL GS-iTFET achieves an average subthreshold swing (SSavg) of 30.5 mV/dec, an Ion of 3.12 × 10–5 A/μm and an Ion/Ioff ratio of 1.81 × 1010. These results demonstrate a significantly low subthreshold swing and a high current ratio of about 1010. In addition, the proposed device eliminates the need for multiple implantation processes, resulting in significant manufacturing cost reductions. As a result, the CEI ETL GS-iTFET shows remarkable potential in future low-power device competition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.