Novel multifunctional fluorescent chemosensors composed of electrospun (ES) nanofibers with high sensitivity toward pH, mercury ions (Hg2+), and temperature were prepared from poly(N-Isopropylacrylamide-co-N-methylolacrylamide-co-rhodamine derivative) (poly(NIPAAm-co-NMA-co-RhBN2AM)) by employing an electrospinning process. NIPAAm and NMA moieties provide hydrophilic and thermo-responsive properties (absorption of Hg2+ in aqueous solutions), and chemical cross-linking sites (stabilization of the fibrous structure in aqueous solutions), respectively. The fluorescent probe, RhBN2AM is highly sensitive toward pH and Hg2+. The synthesis of poly(NIPAAm-co-NMA-co-RhBN2AM) with different compositions was carried on via free-radical polymerization. ES nanofibers prepared from sensory copolymers with a 71.1:28.4:0.5 NIPAAm:NMA:RhBN2AM ratio (P3 ES nanofibers) exhibited significant color change from non-fluorescent to red fluorescence while sensing pH (the λPL, max exhibited a 4.8-fold enhancement) or Hg2+ (at a constant Hg2+ concentration (10−3 M), the λPL, max of P3-fibers exhibited 4.7-fold enhancement), and high reversibility of on/off switchable fluorescence emission at least five times when Hg2+ and ethylenediaminetetraacetic acid (EDTA) were sequentially added. The P3 ES nanofibrous membranes had a higher surface-to-volume ratio to enhance their performance than did the corresponding thin films. In addition, the fluorescence emission of P3 ES nanofibrous membranes exhibited second enhancement above the lower critical solution temperature. Thus, the ES nanofibrous membranes prepared from P3 with on/off switchable capacity and thermo-responsive characteristics can be used as a multifunctional sensory device for specific heavy transition metal (HTM) in aqueous solutions.
Novel multifunctional fluorescent chemosensors composed of electrospun (ES) nanofibers with high sensitivity toward pH, mercury ions (Hg2+), and temperature were prepared from poly(N-Isopropylacrylamide-co-N-methylolacrylamide-co-rhodamine derivative) (poly(NIPAAm-co-NMA-co-RhBN2AM)) by employing electrospinning process. NIPAAm and NMA moieties provide hydrophilic and thermo-responsive properties (absorption of Hg2+ in aqueous solutions), and chemical cross-linking sites (stabilization of the fibrous structure in aqueous solutions), respectively. The fluorescent probe, RhBN2AM is highly sensitive toward pH and Hg2+. Synthesis of poly(NIPAAm-co-NMA-co-RhBN2AM) with different compositions were carried on via free-radical polymerization. ES nanofibers prepared from sensory copolymers with a 71.1:28.4:0.5 NIPAAm: NMA: RhBN2AM ratio (P3 ES nanofibers) exhibited significant color change from nonfluorescent to red fluorescence while sensing pH or Hg2+, and high reversibility of on/off switchable fluorescence emission when Hg2+ and ethylenediaminetetraacetic acid (EDTA) were sequentially added. The P3 ES nanofibrous membranes had a higher surface-to-volume ratio to enhance their performance than did the corresponding thin films. In addition, the fluorescence emission of P3 ES nanofibrous membranes exhibited second enhancement above the lower critical solution temperature. Thus, the ES nanofibrous membranes prepared from P3 with on/off switchable capacity and thermo-responsive characteristics can be used as multifunctional sensory devise for specific heavy transition metal (HTM) in aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.