Developing information technology to democratize scientific knowledge and support citizen empowerment is a challenging task. In our case, a local community suffered from air pollution caused by industrial activity. The residents lacked the technological fluency to gather and curate diverse scientific data to advocate for regulatory change. We collaborated with the community in developing an air quality monitoring system which integrated heterogeneous data over a large spatial and temporal scale. The system afforded strong scientific evidence by using animated smoke images, air quality data, crowdsourced smell reports, and wind data. In our evaluation, we report patterns of sharing smoke images among stakeholders. Our survey study shows that the scientific knowledge provided by the system encourages agonistic discussions with regulators, empowers the community to support policy making, and rebalances the power relationship between stakeholders.
Empowering communities through citizen science.
A significant body of research in Artificial Intelligence (AI) has focused on generating stories automatically, either based on prior story plots or input images. However, literature has little to say about how users would receive and use these stories. Given the quality of stories generated by modern AI algorithms, users will nearly inevitably have to edit these stories before putting them to real use. In this paper, we present the first analysis of how human users edit machine-generated stories. We obtained 962 short stories generated by one of the state-of-the-art visual storytelling models. For each story, we recruited five crowd workers from Amazon Mechanical Turk to edit it. Our analysis of these edits shows that, on average, users (i) slightly shortened machine-generated stories, (ii) increased lexical diversity in these stories, and (iii) often replaced nouns and their determiners/articles with pronouns.Our study provides a better understanding on how users receive and edit machine-generated stories, informing future researchers to create more usable and helpful story generation systems.
Urban air pollution has been linked to various human health concerns, including cardiopulmonary diseases. Communities who suffer from poor air quality often rely on experts to identify pollution sources due to the lack of accessible tools. Taking this into account, we developed Smell Pittsburgh , a system that enables community members to report odors and track where these odors are frequently concentrated. All smell report data are publicly accessible online. These reports are also sent to the local health department and visualized on a map along with air quality data from monitoring stations. This visualization provides a comprehensive overview of the local pollution landscape. Additionally, with these reports and air quality data, we developed a model to predict upcoming smell events and send push notifications to inform communities. We also applied regression analysis to identify statistically significant effects of push notifications on user engagement. Our evaluation of this system demonstrates that engaging residents in documenting their experiences with pollution odors can help identify local air pollution patterns and can empower communities to advocate for better air quality. All citizen-contributed smell data are publicly accessible and can be downloaded from https://smellpgh.org .
Urban air pollution has been linked to various human health considerations, including cardiopulmonary diseases. Communities who suffer from poor air quality often rely on experts to identify pollution sources due to the lack of accessible tools. Taking this into account, we developed Smell Pittsburgh, a system that enables community members to report odors and track where these odors are frequently concentrated. All smell report data are publicly accessible online. These reports are also sent to the local health department and visualized on a map along with air quality data from monitoring stations. This visualization provides a comprehensive overview of the local pollution landscape. Additionally, with these reports and air quality data, we developed a model to predict upcoming smell events and send push notifications to inform communities. Our evaluation of this system demonstrates that engaging residents in documenting their experiences with pollution odors can help identify local air pollution patterns, and can empower communities to advocate for better air quality. CCS CONCEPTS• Human-centered computing → Interactive systems and tools; • Computing methodologies → Machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.