BackgroundThe aim of this study was to evaluate whether arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) can reliably quantify perfusion deficit as compared to dynamic susceptibility contrast (DSC) perfusion MRI.MethodsThirty-nine patients with acute ischemic stroke in the anterior circulation territory were recruited. All underwent ASL and DSC MRI perfusion scans within 30 hours after stroke onset and 31 patients underwent follow-up MRI scans. ASL cerebral blood flow (CBF) and DSC time to maximum (Tmax) maps were used to calculate the perfusion defects. The ASL CBF lesion volume was compared to the DSC Tmax lesion volume by Pearson's correlation coefficient and likewise the ASL CBF and DSC Tmax lesion volumes were compared to the final infarct sizes respectively. A repeated measures analysis of variance and least significant difference post hoc test was used to compare the mean lesion volumes among ASL CBF, DSC Tmax >4–6 s and final infarct.ResultsMean patient age was 72.6 years. The average time from stroke onset to MRI was 13.9 hours. The ASL lesion volume showed significant correlation with the DSC lesion volume for Tmax >4, 5 and 6 s (r = 0.81, 0.82 and 0.80; p<0.001). However, the mean lesion volume of ASL (50.1 ml) was significantly larger than those for Tmax >5 s (29.2 ml, p<0.01) and Tmax >6 s (21.8 ml, p<0.001), while the mean lesion volumes for Tmax >5 or 6 s were close to mean final infarct size.ConclusionQuantitative measurement of ASL perfusion is well correlated with DSC perfusion. However, ASL perfusion may overestimate the perfusion defects and therefore further refinement of the true penumbra threshold and improved ASL technique are necessary before applying ASL in therapeutic trials.
Purpose To compare functional magnetic resonance (MR) imaging for language mapping (hereafter, language functional MR imaging) with direct cortical stimulation (DCS) in patients with brain tumors and to assess factors associated with its accuracy. Materials and Methods PubMed/MEDLINE and related databases were searched for research articles published between January 2000 and September 2016. Findings were pooled by using bivariate random-effects and hierarchic summary receiver operating characteristic curve models. Meta-regression and subgroup analyses were performed to evaluate whether publication year, functional MR imaging paradigm, magnetic field strength, statistical threshold, and analysis software affected classification accuracy. Results Ten articles with a total of 214 patients were included in the analysis. On a per-patient basis, the pooled sensitivity and specificity of functional MR imaging was 44% (95% confidence interval [CI]: 14%, 78%) and 80% (95% CI: 54%, 93%), respectively. On a per-tag basis (ie, each DCS stimulation site or "tag" was considered a separate data point across all patients), the pooled sensitivity and specificity were 67% (95% CI: 51%, 80%) and 55% (95% CI: 25%, 82%), respectively. The per-tag analysis showed significantly higher sensitivity for studies with shorter functional MR imaging session times (P = .03) and relaxed statistical threshold (P = .05). Significantly higher specificity was found when expressive language task (P = .02), longer functional MR imaging session times (P < .01), visual presentation of stimuli (P = .04), and stringent statistical threshold (P = .01) were used. Conclusion Results of this study showed moderate accuracy of language functional MR imaging when compared with intraoperative DCS, and the included studies displayed significant methodologic heterogeneity. RSNA, 2017 Online supplemental material is available for this article.
BackgroundIdentifying the ischemic penumbra in acute stroke subjects is important for the clinical decision making process. The aim of this study was to use resting-state functional magnetic resonance singal (fMRI) to investigate the change in the amplitude of low-frequency fluctuations (ALFF) of these subjects in three different subsections of acute stroke regions: the infarct core tissue, the penumbra tissue, and the normal brain tissue. Another aim of this study was to test the feasilbility of consistently detecting the penumbra region of the brain through ALFF analysis.MethodsSixteen subjects with first-ever acute ischemic stroke were scanned within 27 hours of the onset of stroke using magnetic resonance imaging. The core of infarct regions and penumbra regions were determined by diffusion and perfusion-weighted imaging respectively. The ALFF were measured from resting-state blood oxygen level dependent (BOLD) fMRI scans. The averaged relative ALFF value of each regions were correlated with the time after the onset of stroke.ResultsRelative ALFF values were significantly different in the infarct core tissue, penumbra tissue and normal brain tissue. The locations of lesions in the ALFF maps did not match perfectly with diffusion and perfusion-weighted imagings; however, these maps provide a contrast that can be used to differentiate between penumbra brain tissue and normal brain tissue. Significant correlations between time after stroke onset and the relative ALFF values were present in the penumbra tissue but not in the infarct core and normal brain tissue.ConclusionPreliminary results from this study suggest that the ALFF reflects the underlying neurovascular activity and has a great potential to estimate the brain tissue viability after ischemia. Results also show that the ALFF may contribute to acute stroke imaging for thrombolytic or neuroprotective therapies.
Hydration status is associated with the development of collateral flow after acute MCA occlusion. This preliminary study provides an imaging clue that hydration status and early hydration therapy could be important for acute stroke management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.