A small external magnetic field (100–1000 Oe) was demonstrated to enhance the photocatalytic degradation of methyl orange (MO) using TiO2 NPs in micro optofluidic chip (MOFC) reactors. The rectangular shape of the fluidic channel and TiO2 deposited only onto the lower glass substrate leads to a selectively enhancing photocatalytic reactions by magnetic field in specific directions. Utilizing ethyl alcohol as a scavenger presented the difference between generated hot-hole (hVB+) and hot-electron (eCB−) pathways of photocatalytic reactions. Effects of dissolved oxygen (DO) and hydroxyl ions (OH−) are all demonstrated in a magnetic field-enhancing photocatalytic reaction. The experimental results demonstrate great potential for practical applications utilizing low-price fixed magnets in the field of green chemistry.
Plasmonic photocatalytic reactions have been substantially developed. However, the mechanism underlying the enhancement of such reactions is confusing in relevant studies. The plasmonic enhancements of photocatalytic reactions are hard to identify by processing chemically or physically. This review discusses the noteworthy experimental setups or designs for reactors that process various energy transformation paths for enhancing plasmonic photocatalytic reactions. Specially designed experimental setups can help characterize near-field optical responses in inducing plasmons and transformation of light energy. Electrochemical measurements, dark-field imaging, spectral measurements, and matched coupling of wavevectors lead to further understanding of the mechanism underlying plasmonic enhancement. The discussions herein can provide valuable ideas for advanced future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.