It is difficult to retain tumoricidal doses of ethanol in large or unencapsulated tumours without causing intoxication or damaging surrounding tissue. Ethyl cellulose‐ethanol ablation (ECEA) overcomes this limitation by trapping ethanol intratumorally. To evaluate the safety of ECEA and to develop a clinically feasible workflow, a single‐arm pilot study was performed in cats with lingual/sublingual squamous cell carcinoma (SCC). Six cats underwent intratumoral injection of 6% ethyl cellulose in ethanol. Subjects were observed overnight. There was mild bleeding and transient hyperthermia, and injection site pain and swelling that improved with anti‐inflammatory drugs. Serum ethanol was minimally elevated; the mean concentration peaked 1 hour after injection (129 +/− 15.1 nM). Cats were rechecked at weeks 1 and 2; booster treatments were given in cats (n = 3) with stable quality of life and partial response to therapy. Recheck examinations were then performed monthly. The longest tumour dimension increased in each animal (progressive disease via cRECIST); however, estimated tumour volume was reduced in 3 of 6 cats, within 1 week of ECEA. All cats were euthanized (median survival time 70 days) because of local tumour progression and/or lingual dysfunction that was likely hastened by ECEA. ECEA is not a viable treatment for feline lingual/sublingual SCC; tumour volume was effectively reduced in some cats, but the simultaneous loss of lingual function was poorly tolerated. Further optimization may make ECEA a useful option for SCC at other oral sites in the cat, and for head and neck malignancies in other species.
Radiation‐induced acute oral mucositis is associated with inflammation and pain. In other realms of pain research, nociceptors are known to be activated by inflammatory cytokines; for example, tumor necrosis factor alpha (TNF‐α) can activate transient receptor potential ion channels on sensory neurons. But there is an unclear relationship between inflammatory cytokines and molecular mediators of pain in radiation‐induced mucositis (RIM) and radiation‐associated pain (RAP). In this prospective, analytical, experimental pilot study, a common drug (pentoxifylline [PTX]) was used with the goal of inhibiting TNF‐α signaling in mice that underwent lingual irradiation to induce severe acute oral RIM/RAP. Body weight and glossitis scores were recorded daily. Eye wiping behaviors were assayed as a surrogate measure of oral discomfort (which is possible due to cross‐sensitization of the mandibular and ophthalmic branches of the trigeminal nerve). Quantitative real‐time reverse transcription polymerase chain reaction was performed on irradiated tongue tissue to measure changes in expression of TNF‐α, its receptor, nuclear factor kappa‐light‐chain‐enhancer of activated B cells, transient receptor potential vanilloid type 1 (TRPV1), and transient receptor potential vanilloid type 4 (TRPV4). Responsiveness of afferent sensory trigeminal neurons to TNF‐α, a TRPV1 agonist (capsaicin), and a partial TRPV4 agonist (histamine) was measured via calcium imaging. Although PTX treatment did not reduce glossitis severity or mitigate weight loss in mice with RIM/RAP, it did inhibit the upregulation of TNF‐α’s receptor that normally accompanies RIM, and it also reduced neuronal responsiveness to each of the aforementioned chemical stimuli. These results provide provisional evidence that inhibition of TNF‐α signaling with PTX treatment may serve as a useful tool for reducing pain in head and neck cancer patients.
Feline oral squamous cell carcinoma (FOSCC) is a common and naturally occurring condition that recapitulates many features of human head and neck cancer (HNC). In both species, there is need for improved strategies to reduce pain caused by HNC and its treatment. Research to benefit both species could be conducted using pet cats as a comparative model, but this prospect is limited by lack of validated methods for quantifying FOSCC-associated pain. A prospective non-randomized pilot study was performed for initial validation of: (1) a pet owner administered quality of life questionnaire and visual assessment scoring tool (FORQ/CLIENT); (2) a clinician assessment questionnaire (UFEPS/VET); (3) electronic von Frey testing [EVF]; and (4) Cochet-Bonnet (COBO) aesthesiometry. To assess intra-rater reliability, discriminatory ability, and responsiveness of each assay, 6 cats with sublingual SCC and 16 healthy control cats were enrolled. The intra-rater reliability was moderate-to-good for the clinical metrology instruments and EVF (intraclass correlation coefficient [ICC] ≥ 0.68), but poor for COBO (ICC = 0.21). FORQ/CLIENT scores were higher (worse quality of life) in FOSCC cats vs healthy controls. The internal reliability of FORQ/CLIENT scoring was high (Cronbach α = 0.92); sensitivity and specificity were excellent (100% when using cut-offs determined using receiver operating characteristic [ROC] curves). For the FORQ/CLIENT, there was strong and inverse correlation between scores from the questions and visual assessment (r = − 0.77, r2 = 0.6, P < 0.0001). For the UFEPS/VET, Cronbach’s α was 0.74 (high reliability). Sensitivity and specificity were 100% and 94%, respectively, when using a cut-off score (3.5) based on ROC curves (Youden index of 0.94). Total UFEPS/VET scores were positively correlated with FORQ/CLIENT scores (r2 = 0.72, P < 0.0001). Sensitivity of EVF and COBO ranged from 83 to 100% and specificity ranged from 56 to 94%. Cats with cancer were more sensitive around the face (lower response thresholds) and on the cornea (longer filament lengths) than control animals (P < 0.03). Reduced pressure response thresholds were also observed at a distant site (P = 0.0002) in cancer cats. After giving buprenorphine, EVF pressure response thresholds increased (P = 0.04) near the mandible of cats with OSCC; the length of filament required to elicit a response in the COBO assay also improved (shortened; P = 0.017). Based on these preliminary assessments, the assays described herein had reasonable inter-rater reliability, and they were able to both discriminate between cats with and without oral cancer, and respond in a predictable manner to analgesic therapy. In cats with tongue cancer, there was evidence for regional peripheral sensitization, and widespread somatosensory sensitization. These results provide a basis for multi-dimensional assessments of pain and sensitivity in cats with oral SCC.
IntroductionPatients developing acute radiotherapy induced dermatitis or oral mucositis commonly experience pain. When severe, this radiotherapy-associated pain (RAP) can necessitate treatment breaks; unfortunately, in a variety of cancers, prolongation of the radiotherapy course has been associated with early cancer relapse and/or death. This is often attributed to accelerated repopulation, but it is unknown whether pain or pain signaling constituents might alter tumor behavior and hasten metastatic disease progression. We studied this by testing the hypothesis that severe acute RAP at one site can hasten tumor growth at a distant site.MethodsMice underwent single fraction tongue irradiation (27 Gy, or 0 Gy “sham” control) to induce severe glossitis. At the time of maximal oral RAP, one of three luciferase-transfected tumor cell lines were injected via tail vein (4T1, B16F10, MOC2; each paired to their syngeneic host: BALB/c or C57BL/6); tumor burden was assessed via in vivo transthoracic bioluminescence imaging and ex vivo pulmonary nodule quantification. Survival was compared using Kaplan-Meier statistics.ResultsTongue irradiation and resultant RAP promoted lung tumor growth of 4T1-Luc2 cells in BALB/c mice. This effect was not a result of off-target radiation, nor an artefact of environmental stress caused by standard (subthermoneutral) housing temperatures. RAP did not affect the growth of B16F10-Luc2 cells, however, C57BL/6 mice undergoing tail vein injection of MOC2-Luc2 cells at the time of maximal RAP experienced early lung tumor-attributable death. Lung tumor growth was normalized when RAP was reduced by treatment with resiniferatoxin (300 µg/kg, subcutaneously, once).DiscussionThis research points towards radiation-induced activation of capsaicin-responsive (TRPV1) neurons as the cause for accelerated growth of tumors at distant (unirradiated) sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.