Background: Preservation of organ function is important in cancer treatment. The 'watch-and-wait' strategy is an important approach in management of esophageal cancer. However, clinical imaging cannot accurately evaluate the presence or absence of residual tumor after neoadjuvant chemoradiation. As a result, using radiomics to predict complete pathological response in esophageal cancer has gained in popularity in recent years. Given that the characteristics of patients and sites vary considerably, a meta-analysis is needed to investigate the predictive power of radiomics in esophageal cancer. Patients and Methods: PRISMA guidelines were used to conduct this study. PubMed, Cochrane, and Embase were searched for literature review. The quality of the selected studies was evaluated by the radiomics quality score. I 2 score and Cochran's Q test were used to evaluate heterogeneity between studies. A funnel plot was used for evaluation of publication bias. Results: A total of seven articles were collected for this meta-analysis. The pooled area under the receiver operating characteristics curve of the seven selected articles for predicting pathological complete response in eosphageal cancer patient was quite high, achieving a pooled value of 0.813 (95% confidence intervaI=0.761-0.866). The radiomics quality score ranged from −2 to 16 (maximum score: 36 points). Three out of the seven studies used machine learning algorithms, while the others used traditional biostatistics methods. One of the seven studies used morphology class features, while four studies used first-order features, and five used second-order features. Conclusion: Using radiomics to predict complete pathological response after neoadjuvant chemoradiotherapy in esophageal cancer is feasible. In the future, prospective, multicenter studies should be carried out for predicting pathological complete response in patients with esophageal cancer.
Although increased plasma and pleural fluid levels of sIL-2R should not be viewed as a diagnostic test specific for tuberculous pleural effusion, sIL-2R level appears to be clinically useful as a biochemical marker to differentiate tuberculous and carcinomatous pleural effusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.