The low-frequency magneto-optical properties of bilayer Bernal graphene are studied by the tight-binding model with the four most important interlayer interactions taken into account. Since the main features of the wave functions are well-depicted, the Landau levels can be divided into two groups based on the characteristics of the wave functions. These Landau levels lead to four categories of absorption peaks in the optical absorption spectra. Such absorption peaks own complex optical selection rules, and these rules can be reasonably explained by the characteristics of the wave functions. In addition, twin-peak structures, regular frequency-dependent absorption rates, and complex field-dependent frequencies are also obtained in this work. The main features of the absorption peaks are very different from those in monolayer graphene and have their origin in the interlayer interactions.
The low-frequency optical excitations of AA-stacked bilayer graphene are
investigated by the tight-binding model. Two groups of asymmetric LLs lead to
two kinds of absorption peaks resulting from only intragroup excitations. Each
absorption peak obeys a single selection rule similar to that of monolayer
graphene. The excitation channel of each peak is changed as the field strength
approaches a critical strength. This alteration of the excitation channel is
strongly related to the setting of the Fermi level. The peculiar optical
properties can be attributed to the characteristics of the LL wave functions of
the two LL groups. A detailed comparison of optical properties between
AA-stacked and AB-stacked bilayer graphenes is also offered. The compared
results demonstrate that the optical properties are strongly dominated by the
stacking symmetry. Furthermore, the presented results may be used to
discriminate AABG from MG, which can be hardly done by STM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.