In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.
The aim of this research is the study of hydrogen abstraction reactions and methyl adsorption reactions on the surfaces of (100), (110), and (111) oriented nitrogen-doped diamond through first-principles density-functional calculations. The three steps of the growth mechanism for diamond thin films are hydrogen abstraction from the diamond surface, methyl adsorption on the diamond surface, and hydrogen abstraction from the methylated diamond surface. The activation energies for hydrogen abstraction from the surface of nitrogen-undoped and nitrogen-doped diamond (111) films were −0.64 and −2.95 eV, respectively. The results revealed that nitrogen substitution was beneficial for hydrogen abstraction and the subsequent adsorption of methyl molecules on the diamond (111) surface. The adsorption energy for methyl molecules on the diamond surface was generated during the growth of (100)-, (110)-, and (111)-oriented diamond films. Compared with nitrogen-doped diamond (100) films, adsorption energies for methyl molecule adsorption were by 0.14 and 0.69 eV higher for diamond (111) and (110) films, respectively. Moreover, compared with methylated diamond (100), the activation energies for hydrogen abstraction were by 0.36 and 1.25 eV higher from the surfaces of diamond (111) and (110), respectively. Growth mechanism simulations confirmed that nitrogen-doped diamond (100) films were preferred, which was in agreement with the experimental and theoretical observations of diamond film growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.