A natural gas reservoir was discovered at approximately 3 km (TVDSS) through first vertical wildcat. Four subsequent wildcats were drilled in deviated trajectory to assess hydrocarbon distribution with no success. Resistivity log response from hydrocarbon interval appeared as low value low contrast. Seismic acquired onshore with high degree of static variation resulted in low frequency, unable to delineate thin sand interval efficiently. Several hypotheses were formed to explain the failed discovery. First, geological structure is complex due to local tectonic deformities created faults that compartmentalized the reservoir. Second, hydrocarbon charge and migration pathway might be underestimated. Third, presence of high conductive mineral might affect the resistivity log acquisition. An integration of three-dimensional enhanced seismic horizon and fault interpretation, unsupervised machine learning in facies classification, petrophysical data conditioning, rock physics cross validation, and three-dimensional static modeling is used to provide clearer insight on the natural gas play.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.