Enamel is the outermost layer of the tooth that protects it from invasion. In general, an acidic environment accelerates tooth demineralization, leading to the formation of cavities. Scanning electron microscopy (SEM) is conventionally used as an in vitro tool for the observation of tooth morphology changes with acid attacks. Yet, SEM has intrinsic limitations for the potential application of in vivo detection in the early demineralization process. In this study, a high-resolution optical coherence tomography (OCT) system with the axial and transverse resolutions of 2.0 and 2.7 μm in teeth has been utilized for characterizing the effect of the acidic environment (simulated by phosphoric acid) on the enamel topology. The scattering coefficient and the surface roughness of enamel can be directly derived from the OCT results, enabling a quantitative evaluation of the topology changes with demineralization. The dynamic process induced by the acid application is also recorded and analyzed with OCT, depicting the evolution of the demineralization process on enamel. Notably, the estimated enamel scattering coefficient and surface roughness significantly increase with the application time of acid and the results illustrate that the values of both parameters after demineralization are significantly larger than those obtained before the demineralization, illustrating both parameters could be effective to differentiate the healthy and demineralized teeth and determine the severity. The obtained results unambiguously illustrate that demineralization of the tooth surface can be successfully detected by OCT and further used as an indicator of early-stage cavity formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.