Adoptive transfer of high-affinity chimeric antigen receptor (CAR) T cells targeting hematological cancers has yielded impressive clinical results. However, safety concerns regarding target expression on healthy tissue and poor efficacy have hampered application to solid tumors. Here, a panel of affinity-variant CARs were constructed targeting overexpressed ICAM-1, a broad tumor biomarker, using its physiological ligand, LFA-1. Anti-tumor T cell potency in vitro was directly proportional to CAR affinity and ICAM-1 density. In a solid tumor mouse model allowing simultaneous monitoring of anti-tumor potency and systemic off-tumor toxicity, micromolar affinity CAR T cells demonstrated superior anti-tumor efficacy and safety compared to their nanomolar counterparts. Longitudinal T cell tracking by PET/CT and concurrent cytokine measurement revealed superior expansion and contraction kinetics of micromolar affinity CAR T cells. Therefore, we developed an ICAM-1 specific CAR with broad anti-tumor applicability that utilized a reduced affinity targeting strategy to significantly boost efficacy and safety.
Substantial research has been devoted to elucidate the roles that extracellular vesicles (EVs) play in the regulation of both normal and pathological processes, and multiple studies have demonstrated their potential as a source of cancer biomarkers.
While the majority of thyroid cancer patients are easily treatable, those with anaplastic or poorly differentiated recurrent thyroid carcinomas have a very poor prognosis with a median survival of less than a year. Previously, we have shown a significant correlation between ICAM-1 overexpression and malignancy in thyroid cancer, and have pioneered the use of ICAM-1 targeted CAR T cells as a novel treatment modality. For clinical translation of this novel modality, we designed CAR T cells possessing micromolar rather than nanomolar affinity to ICAM-1 to avoid cytotoxicity in normal cells with basal levels of ICAM-1 expression. Herein, we report the automated process of CAR T cell manufacturing with CliniMACS Prodigy (Miltenyi Biotec) using cryopreserved peripheral blood leukocytes from apheresis collections. Using Prodigy, thawed leukopak cells were enriched for CD4
+
and CD8
+
T cells, subjected to double transduction using lentiviral vector, and expanded in culture for a total of 10 days with a final yield of 2–4 × 10
9
cells. The resulting CAR T cells were formulated for cryopreservation to be used directly for infusion into patients after thawing with no further processing. We examined cross-reactivity of CAR T cells toward both human and murine ICAM-1 and ICAM-1 expression in human and mouse tissues to demonstrate that both efficacy and on-target, off-tumor toxicity can be studied in our preclinical model. Selective anti-tumor activity in the absence of toxicity provides proof-of-concept that micromolar affinity tuned CAR T cells can be used to target tumors expressing high levels of antigen while avoiding normal tissues expressing basal levels of the same antigen. These studies support the initiation of a phase I study to evaluate the safety and potential efficacy of micromolar affinity tuned CAR T cells against newly diagnosed anaplastic and refractory or recurrent thyroid cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.