A new chemical method for the traceless labeling of glycoproteins with synthetic boronic acid (BA)-tosyl probes was successfully developed. The BA moiety acts as an affinity head to direct the formation of a cyclic boronate diester with the diol groups of glycans. Following this step, the electrophilic tosyl group is displaced by an SN2 reaction with a nucleophilic residue of the boronated glycoprotein, and finally, a reporter group is tagged onto the glycoprotein via an ether linkage. In the presence of polyols, a competition reaction recovers the native glycan of the tagged glycoprotein, conserving its biological significance. The BA-tosyl probes were used successfully for the specific labeling of glycosylated fetuins in a mixed protein pool and from crude Escherichia coli (E. coli) lysate. Further, a BA-tosyl-functionalized glass slide was used to fabricate glycoprotein microarrays with highly conserved glycans. By interacting with various lectins (carbohydrate-binding proteins), such as Concanavalin A (Con A) and wheat germ agglutinin (WGA), the types of carbohydrates and specific linkages of glycoproteins (α or β) could be systematically monitored. It is believed that the newly developed method will greatly accelerate the understanding of glycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.