In summary, based on (a) their effects on DNA, RNA, protein synthesis and on the cell cycle, (b) their alkylating power and (c) their interactions with DNA, the 3-(2-chloroethyl)tetrazepinones appeared to kill tumor cells by a novel mechanism which may significantly differ from that of their 3-(2-chloroethyl)-tetrazinone counterpart, mitozolomide.
Pyridoxal-5'-phosphate (PLP), the enzymatic cofactor form of Vitamin B6 (vitB6), is a versatile compound that has essential roles in metabolism. Cellular PLP homeostasic regulation is currently not well understood. Here we report that in Arabidopsis, biosynthesized PLP is sequestered by specific aminotransferases (ATs), and that the proteins ROOT UV-B SENSITIVE 1 (RUS1) and RUS2 function with ATs to regulate PLP homeostasis. The stunted growth phenotypes of rus1 and rus2 mutants were previously shown to be rescuable by exogenously supplied vitB6. Specific residue changes near the PLP-binding pocket in ASPARTATE AMINOTRANSFERASE2 (ASP2) also rescued rus1 and rus2 phenotypes. In this study, saturated suppressor screens identified 14 additional suppressor of rus (sor) alleles in four aminotransferase genes (ASP1, ASP2, ASP3, or ALANIN AMINOTRANSFERASE1 (AAT1)), which suppressed the rus phenotypes to varying degrees. Each of the sor mutations altered an amino acid in the PLP-binding pocket of the protein, and sor proteins were found to have reduced levels of PLP conjugation. Genetic data revealed that the availability of PLP normally requires both RUS1 and RUS2, and that increasing the number of sor mutants additively enhanced the suppression of rus phenotypes. Biochemical results showed that RUS1 and RUS2 physically interacted with ATs. Our studies suggest a mechanism in which RUS1, RUS2 and specific ATs work together to regulate PLP homeostasis in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.