Dilute magnetic semiconductors (DMS), achieved through substitutional doping of spin-polarized transition metals into semiconducting systems, enable experimental modulation of spin dynamics in ways that hold great promise for novel magneto-electric or magneto-optical devices, especially for two-dimensional (2D) systems such as transition metal dichalcogenides that accentuate interactions and activate valley degrees of freedom. Practical applications of 2D magnetism will likely require room-temperature operation, air stability, and (for magnetic semiconductors) the ability to achieve optimal doping levels without dopant aggregation. Here, room-temperature ferromagnetic order obtained in semiconducting vanadium-doped tungsten disulfide monolayers produced by a reliable single-step film sulfidation method across an exceptionally wide range of vanadium concentrations, up to 12 at% with minimal dopant aggregation, is described. These monolayers develop p-type transport as a function of vanadium incorporation and rapidly reach ambipolarity. Ferromagnetism peaks at an intermediate vanadium concentration of˜2 at% and decreases for higher concentrations, which is consistent with quenching due to orbital hybridization at closer vanadium-vanadium spacings, as supported by transmission electron microscopy, magnetometry, and first-principles calculations. Room-temperature 2D-DMS provide a new component to expand the functional scope of van der Waals heterostructures and bring semiconducting magnetic 2D heterostructures into the realm of practical application.
The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long‐range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step toward modern TMD‐based spintronics, but also enables exploration of new and exciting dimensionality‐driven magnetic phenomena. To this end, tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V‐doped WSe2 are shown. As vanadium concentration increases, the saturation magnetization increases, which is optimal at ≈4 at% vanadium; the highest doping level ever achieved for V‐doped WSe2 monolayers. The TISF occurs at ≈175 K and becomes more pronounced upon increasing the temperature toward room temperature. The TISF can be manipulated by changing the vanadium concentration. The TISF is attributed to the magnetic‐field‐ and temperature‐dependent flipping of the nearest W‐site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin‐polarized density functional theory study. The findings pave the way for the development of novel spintronic and valleytronic nanodevices and stimulate further research.
Atomically thin transition metal dichalcogenide (TMD) semiconductors hold enormous potential for modern optoelectronic devices and quantum computing applications. By inducing long-range ferromagnetism (FM) in these semiconductors through the introduction of small amounts of a magnetic dopant, it is possible to extend their potential in emerging spintronic applications. Here, we demonstrate light-mediated, room temperature (RT) FM, in V-doped WS 2 (V-WS 2 ) monolayers. We probe this effect using the principle of magnetic LC resonance, which employs a soft ferromagnetic Co-based microwire coil driven near its resonance in the radio frequency (RF) regime. The combination of LC resonance with an extraordinary giant magneto-impedance effect, renders the coil highly sensitive to changes in the magnetic flux through its core. We then place the V-WS 2 monolayer at the core of the coil where it is excited with a laser while its change in magnetic permeability is measured. Notably, the magnetic permeability of the monolayer is found to depend on the laser intensity, thus confirming light control of RT magnetism in this two-dimensional (2D) material. Guided by density functional calculations, we attribute this phenomenon to the presence of excess holes in the conduction and valence bands, as well as carriers trapped in the magnetic doping states, which in turn mediates the magnetization of the V-WS 2 monolayer. These findings provide a unique route to exploit light-controlled ferromagnetism in low powered 2D spintronic devices capable of operating at RT.
Understanding impacts of phase transition, phase coexistence, and surface magnetism on the longitudinal spin Seebeck effect (LSSE) in a magnetic system is essential to manipulate the spin to charge current conversion efficiency for spincaloritronic applications. We aim to elucidate these effects by performing a comprehensive study of the temperature dependence of LSSE in biphase iron oxide (BPIO = -Fe2O3 + Fe3O4) thin films grown on Si (100) and Al2O3 (111) substrates. A combination of temperature-dependent anomalous Nernst effect (ANE) and electrical resistivity measurements show that the contribution of ANE from the BPIO layer is negligible compared to the intrinsic LSSE in the Si/BPIO/Pt heterostructure even at room temperature. Below the Verwey transition of the Fe3O4 phase, the total signal across BPIO/Pt is dominated by the LSSE. Noticeable changes in the intrinsic LSSE signal for both Si/BPIO/Pt and Al2O3/BPIO/Pt heterostructures around the Verwey transition of the Fe3O4 phase and the antiferromagnetic (AFM) Morin transition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.