Background Rickettsia felis and Rickettsia typhi are emerging arthropod-borne zoonoses causing fever and flu-like symptoms. Seroprevalence and risk factors associated with exposure to these organisms was explored in Australian veterinarians.MethodsOne hundred and thirty-one veterinarians from across Australia were recruited to participate in a cross-sectional survey. Veterinarians provided a single blood sample and answered a questionnaire on potential risk factors influencing their exposure to R. felis and R. typhi. Indirect microimmunofluorescence antibody testing (IFAT) was used to identify evidence of serological exposure of the participants to R. felis and R. typhi. Results were analyzed and a logistical regression model performed to predict risk factors associated with seropositivity.ResultsIn total, 16.0% of participants were seropositive to R. felis, 4.6% to R. typhi and 35.1% seropositive to both, where cross-reactivity of the IFAT between R. felis and R. typhi precluded a definitive diagnosis. Veterinarians residing within the south-eastern states of Victoria and Tasmania were at a higher risk of exposure to R. felis or generalised R. felis or R. typhi exposure. Older veterinarians and those that recommended flea treatment to their clients were found to be significantly protected from exposure.ConclusionsThe high exposure to R. felis amongst veterinary professionals suggests that flea-borne spotted fever is an important cause of undifferentiated fever conditions that may not be adequately recognized in Australia.
Rickettsia felis is an emerging zoonosis, causing flea-borne spotted fever (FBSF). Serological diagnosis is typically confounded by cross-reactivity with typhus group rickettsiae and prior to the development of specific serological methods, cases of FBSF in Australia were misdiagnosed.Patient sera tested between August 2010 and December 2013 and known to be seropositive to R. typhi by immunofluorescence antibody testing (IFAT) were subsequently retested against R. felis using an R. felis-specific IFAT. Sera of 49 patients were of a sufficient quality to be included in re-analysis. A classification of FBSF and murine typhus (MT) was attributed to fourteen and seven patients respectively, based on a minimum four-fold higher antibody titre to R. felis than to R. typhi and vice versa. Twenty-eight patients were classified as indeterminate for either R. felis or R. typhi (antibody titres within two-fold of one another).Historically, it is likely that Australian patients clinically ill with FBSF were misdiagnosed. It is important that medical practitioners consider FBSF as part of their differential diagnoses, and obtain relevant history with regard to patient's exposure to domestic pets and their fleas. Australian microbiology diagnostic laboratories should include serological testing for R. felis as part of the diagnostic panel for febrile diseases. Veterinarians are encouraged to increase their awareness of this emerging zoonosis and advocate flea control in pets.
BackgroundFlea-borne spotted fever (FBSF) caused by Rickettsia felis is an arthropod-borne zoonosis. This study aimed to determine the prevalence, primary species and genotype(s) of R. felis infecting fleas from dogs and cats.ResultsAll fleas were identified as Ctenocephalides felis felis. All rickettsial DNA detected in fleas was identified as being 100% homologous to R. felis URRWXCal2, with positivity within tropical, subtropical and temperate regions noted at 6.7%, 13.2% and 15.5%, respectively. Toy/small breed dogs were found to be at a lower odds of harboring R. felis-positive fleas compared with large breed dogs on univariate analysis, while DMH and pedigree breed cats were at a lower odds compared to DSH cats. Cooler minimum temperature ranges of between 15 to 20 °C and between 8 to 15 °C increased the odds of R. felis positivity in fleas, as did a constrained maximum temperature range of between 27 to 30 °C on multivariable analysis.ConclusionsEnvironmental temperature may play a part in influencing R. felis prevalence and infectivity within its flea host. Regional climatic differences need to be considered when approaching public health risk mitigation strategies for FBSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.