In this study, a sputtered Mg film was fabricated as an anode, a natural magnesium silicate mineral was used as electrolyte, and an all-solid-state Mg battery with a carbon black electrode was assembled; subsequently, the battery’s electrochemical characteristics and charge–discharge mechanism were evaluated. Because the abundant interlayer water in the magnesium silicate mineral structure allowed for cations channel to form, the battery exhibited considerable ionic conductivity at room temperature. The magnesium silicate mineral was fabricated as a flexible cloth membrane solid-state electrolyte to improve its adhesion to the electrode surface and, consequently, enhance battery performance. During high-voltage charging, a visible blocking layer structure was formed on the surface of the Mg electrode. The formation of the blocking layer considerably increased the interfacial resistance of the battery, which was detrimental to the insertion and extraction of the Mg ions on the electrode surface and reduced the capacity of the solid-state battery. Thus, the solid-state Mg battery exhibited acceptable capacity and stability and the potential for application in energy storage systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.