Genetic association studies have been a popular approach for assessing the association between common Single Nucleotide Polymorphisms (SNPs) and complex diseases. However, other genomic data involved in the mechanism from SNPs to disease, e.g., gene expressions, are usually neglected in these association studies. In this paper, we propose to exploit gene expression information to more powerfully test the association between SNPs and diseases by jointly modeling the relations among SNPs, gene expressions and diseases. We propose a variance component test for the total effect of SNPs and a gene expression on disease risk. We cast the test within the causal mediation analysis framework with the gene expression as a potential mediator. For eQTL SNPs, the use of gene expression information can enhance power to test for the total effect of a SNP-set, which are the combined direct and indirect effects of the SNPs mediated through the gene expression, on disease risk. We show that the test statistic under the null hypothesis follows a mixture of χ2 distributions, which can be evaluated analytically or empirically using the resampling-based perturbation method. We construct tests for each of three disease models that is determined by SNPs only, SNPs and gene expression, or includes also their interactions. As the true disease model is unknown in practice, we further propose an omnibus test to accommodate different underlying disease models. We evaluate the finite sample performance of the proposed methods using simulation studies, and show that our proposed test performs well and the omnibus test can almost reach the optimal power where the disease model is known and correctly specified. We apply our method to re-analyze the overall effect of the SNP-set and expression of the ORMDL3 gene on the risk of asthma.
Background Mediation analyses have been a popular approach to investigate the effect of an exposure on an outcome through a mediator. Mediation models with multiple mediators have been proposed for continuous and dichotomous outcomes. However, development of multi-mediator models for survival outcomes is still limited. Methods We present methods for multi-mediator analyses using three survival models: Aalen additive hazard models, Cox proportional hazard models, and semiparametric probit models. Effects through mediators can be characterized by path-specific effects, for which definitions and identifiability assumptions are provided. We derive closed form expressions for path-specific effects for the three models, which are intuitively interpreted using a causal diagram. Results Mediation analyses using Cox models under the rare outcome assumption and Aalen additive hazard models consider effects on log hazard ratio and hazard difference, respectively; analyses using semiparametric probit models consider effects on difference in transformed survival time as well as survival probability. The three models were applied to a hepatitis study where we investigated effects of hepatitis C on liver cancer incidence mediated through baseline and/or follow-up hepatitis B viral load. The three methods show consistent results on respective effect scales, which suggest an adverse estimated effect of hepatitis C on liver cancer not mediated through hepatitis B, and a protective estimated effect mediated through the baseline (and possibly follow-up) of hepatitis B viral load. Conclusions Causal mediation analyses of survival outcome with multiple mediators are developed for additive hazard and proportional hazard and probit models with utility demonstrated in a hepatitis study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.