We characterized Salmonella enterica serovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam to investigate their genetic relatedness and antimicrobial resistance. The isolates from Bangladesh and Vietnam were genetically closely related but were distant from those from Indonesia and Taiwan. All but a few isolates from Indonesia and Taiwan were susceptible to all antimicrobials tested. The majority of isolates from Bangladesh and Vietnam were multidrug resistant (MDR) and belonged to the widespread haplotype H58 clone. IncHI1 plasmids were detected in all MDR S. Typhi isolates from Vietnam but in only 15% of MDR isolates from Bangladesh. Resistance genes in the majority of MDR S. Typhi isolates from Bangladesh should reside in the chromosome. Among the isolates from Bangladesh, 82% and 40% were resistant to various concentrations of nalidixic acid and ciprofloxacin, respectively. Several resistance mechanisms, including alterations in gyrase A, the presence of QnrS, and enhanced efflux pumps, were involved in the reduced susceptibility and resistance to fluoroquinolones. Intensive surveillance is necessary to monitor the spread of chromosome-mediated MDR and fluoroquinolone-resistant S. Typhi emerging in Bangladesh.
GA (glucoamylase) hydrolyses starch and polysaccharides to beta-D-glucose. RoGA (Rhizopus oryzae GA) consists of two functional domains, an N-terminal SBD (starch-binding domain) and a C-terminal catalytic domain, which are connected by an O-glycosylated linker. In the present study, the crystal structures of the SBD from RoGA (RoGACBM21) and the complexes with beta-cyclodextrin (SBD-betaCD) and maltoheptaose (SBD-G7) were determined. Two carbohydrate binding sites, I (Trp(47)) and II (Tyr(32)), were resolved and their binding was co-operative. Besides the hydrophobic interaction, two unique polyN loops comprising consecutive asparagine residues also participate in the sugar binding. A conformational change in Tyr(32) was observed between unliganded and liganded SBDs. To elucidate the mechanism of polysaccharide binding, a number of mutants were constructed and characterized by a quantitative binding isotherm and Scatchard analysis. A possible binding path for long-chain polysaccharides in RoGACBM21 was proposed.
BackgroundThe issue of whether patients diagnosed with metastatic colorectal cancer who harbor KRAS codon 13 mutations could benefit from the addition of anti-epidermal growth factor receptor therapy remains under debate. The aim of the current study was to perform computational analysis to investigate the structural implications of the underlying mutations caused by c.38G>A (p.G13D) on protein conformation.MethodsMolecular dynamics (MD) simulations were performed to understand the plausible structural and dynamical implications caused by c.35G>A (p.G12D) and c.38G>A (p.G13D). The potential of mean force (PMF) simulations were carried out to determine the free energy profiles of the binding processes of GTP interacting with wild-type (WT) KRAS and its mutants (MT).ResultsUsing MD simulations, we observed that the root mean square deviation (RMSD) increased as a function of time for the MT c.35G>A (p.G12D) and MT c.38G>A (p.G13D) when compared with the WT. We also observed that the GTP-binding pocket in the c.35G>A (p.G12D) mutant is more open than that of the WT and the c.38G>A (p.G13D) proteins. Intriguingly, the analysis of atomic fluctuations and free energy profiles revealed that the mutation of c.35G>A (p.G12D) may induce additional fluctuations in the sensitive sites (P-loop, switch I and II regions). Such fluctuations may promote instability in these protein regions and hamper GTP binding.ConclusionsTaken together with the results obtained from MD and PMF simulations, the present findings implicate fluctuations at the sensitive sites (P-loop, switch I and II regions). Our findings revealed that KRAS mutations in codon 13 have similar behavior as KRAS WT. To gain a better insight into why patients with metastatic colorectal cancer (mCRC) and the KRAS c.38G>A (p.G13D) mutation appear to benefit from anti-EGFR therapy, the role of the KRAS c.38G>A (p.G13D) mutation in mCRC needs to be further investigated.
Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology.
Circular permutation (CP) is a protein structural rearrangement phenomenon, through which nature allows structural homologs to have different locations of termini and thus varied activities, stabilities and functional properties. It can be applied in many fields of protein research and bioengineering. The limitation of applying CP lies in its technical complexity, high cost and uncertainty of the viability of the resulting protein variants. Not every position in a protein can be used to create a viable circular permutant, but there is still a lack of practical computational tools for evaluating the positional feasibility of CP before costly experiments are carried out. We have previously designed a comprehensive method for predicting viable CP cleavage sites in proteins. In this work, we implement that method into an efficient and user-friendly web server named CPred (CP site predictor), which is supposed to be helpful to promote fundamental researches and biotechnological applications of CP. The CPred is accessible at http://sarst.life.nthu.edu.tw/CPred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.