<p>The offshore area of northern Taiwan is subject to post-collisional collapse and under an extensional regime. Because of the change from a compressional environment to an extensional environment, a series of normal fault structures has occurred. The reverse faults in the Gongliao area of Taiwan, include the Longdong Fault, Wentzukeng Fault, Aodi Fault, and Fangjiao Faul, are distributed from inland to the coastline. However, their prolongations to the offshore area are unknown. In order to understand the possible fault extension to the offshore area and the possible fault activity, we conducted Sparker reflection seismic surveys in the offshore area of Gongliao. The Sparker seismic system is suitable for shallow water surveys and can provide high-resolution shallow structures. To understand the geological structures in our study area, sequence stratigraphy, seismic facies and faults identification are used to analyze our seismic profiles. According to the sequence stratigraphy, the transgressive surface, the last glacial maximum (LGM) unconformity, and last maximum flooding surface can be identified. In addition, the sand wave base surface, syn-rift unconformity and the acoustic basement are defined. We have identified 5 normal faults (i.e. Fa, Fb, Fc, Fd and Fe) in the prolongation of the onshore faults. All the identified faults cut through the basement and caused large offsets, forming half-graben basins. For the activity of these faults, the strata in the half-graben basin A formed by Fault a, is tilted, which was probably caused by the continuous growth of the fault. The strata in the half-graben basin B formed by Faults b and c, are inclined below the LGM unconformity, but the strata above the LGM unconformity are relatively flat. In contrast, only the sediments in the upper part of the half-graben basin B show the characteristics of sequence stratigraphy, which means the sediments deposit controlled by sea level change. In summary, we infer that the faults b and c were active before the LGM and relatively stable recently. Faults d and are covered by thick sediment layers, indicating early structures not active at all.</p>
<p>The Southern Okinawa Trough (SOT) is a back-arc-basin and characterized by an active normal faulting system and magmatic activity. Most seismic activities beneath the Southern Okinawa Trough at shallow depths (<30 km) are located about 50 km east of Ilan Plain (122.15&#176;E - 122.55&#176;E). &#160;The seismic rate has increased significantly after May 2021. An earthquake struck offshore area of Ilan Plain on 4 August (0804 earthquake). Its magnitude of 6.1 at 7.0 km made it one of the rare, extremely powerful quakes ever before in the study area. However, the cause and mechanism are still unclear and worthy of further investigation. Furthermore, the previous study shows that submarine landslides have occurred in the northern continental margin of SOT. The frequent earthquakes will raise the risk of slope failure and may generate a local tsunami causing damage around the northeast coast of Taiwan. In order to explore the generation of 0804 earthquake, we have deployed an Ocean Bottom Seismometer (OBS) network to capture the seismicity around the study area. &#160;In total, 852 events have been relocated and most of them are located in the high positive magnetic anomaly zone. The distributions of the earthquake show an NW-SE trending direction and may be related to the magmatic activity. &#160;</p>
<p>The Kaoping submarine canyon (KPSC) originates from Kaoping River, southwestern Taiwan that extends about 250 kilometers long from the Kaoping River mouth down to the Manila Trench. It can be divided into three major sections: upper reach (meandering), middle reach (NW-SE trending and V-shaped canyon) and lower reach (meandering). Based on recent a swath bathymetric data in the uppermost KPSC, an obvious seafloor depression can be observed in the eastern bank of the canyon. The eastern bank of the canyon reveals about 30-50 meters in average lower than western bank. The mechanism is blurred. In this study, to investigate fine sedimentary structures in 3D point of view, we used marine sparker seismic method. The seismic source frequency varies from 100 to 1200 Hz which can provide about 0.6 meters vertical resolution (i.e. central frequency 600 Hz and 1,600 m/s Vp). We have collected 75 in-lines across the canyon and 3 cross-lines perpendicular to the in-line. The data went through conventional marine seismic data processing procedures such as bad trace kill, band-pass filter, 2D geometry settings, NMO stacking, swell correction, match filter and predictive deconvolution. The 2D dataset was reformatted by applying 3D geometry settings to create a 3D seismic cube. The result shows that a wide incision channel was first found in the north of Xiaoliuchiu islet. Through depth, this channel becomes two narrower channels divided by a mud diapir. This down cutting can be traced down to transgressive sequence in prior to LGM (Last Glacial Maximum). In addition, a deep-towed sub-bottom profiler shows an obvious down-lapping structures heading off canyon that indicates over banking flow may be a key role to cause this erosional event.</p>
Models of simulation program with integrated circuit emphasis (SPICE)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.