We investigate experimentally and theoretically the sequence of phases that occurs when a self-assembled monolayer of gold nanoparticles supported on a fluid is compressed uniaxially in a Langmuir trough. Uniaxial compression of the monolayer results in the appearance of lines that have been shown to be regions of trilayer. These lines exhibit complex patterns that depend on the extent of compression. We show that these patterns can be understood in terms of an equilibrium statistical mechanical theory, originally developed in the context of commensurate-incommensurate transitions in krypton monolayers adsorbed on graphite, in which there is an energy cost to line deformations and to line intersections. Even though line intersections are energetically costly, they lower the free energy because they cause the entropy of the system to increase when the density of lines is low enough. Our analytic and Monte Carlo analyses of the model demonstrate that the model exhibits two-phase coexistence. Our experimental observations are qualitatively consistent with the predictions of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.