Dorsal root ganglion stimulation (DRG-S) is a form of selective neuromodulation therapy that targets the dorsal root ganglion. DRG-S offers analgesia in a variety of chronic pain conditions and is approved for treatment of complex regional pain syndrome (CRPS) by the US Food and Drug Administration (FDA). There has been increasing utilization of DRG-S to treat various neuropathic pain syndromes of the lower extremity, although evidence remains limited to one randomized controlled trial and 39 observational studies. In this review, we appraised the current evidence for DRG-S in the treatment of lower extremity neuropathic pain using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. The primary outcome was change in pain intensity after DRG-S compared to baseline. We stratified presentation of results based of type of neuropathy (CRPS, painful diabetic neuropathy, mononeuropathy, polyneuropathy) as well as location of neuropathy (hip, knee, foot). Future powered randomized controlled trials with homogeneous participants are warranted.
IntroductionHabituation and loss of efficacy from spinal cord stimulation are commonly reported. This retrospective analysis investigated rescue of analgesia from spinal cord stimulation failure after implementing a strategy called a stimulation holiday, during which spinal cord stimulation is interrupted for a defined period and subsequently restarted.MethodsA 6-year review (June 1, 2016–May 13, 2022) from a tertiary care center was conducted on patients who underwent 10 kHz frequency dorsal column spinal cord stimulation for ≥3 months, experienced loss of efficacy (≤30% pain relief or patient self-report of lack of meaningful pain relief), subsequently underwent a stimulation holiday, and then restarted spinal cord stimulation. The primary outcome was comparison of pain relief and responder rate (≥50% relief in pain intensity) before and after stimulation holiday.ResultsOf 212 patients, 40 (18.9%) experienced loss of efficacy at a mean follow-up period of 452.7±326.4 days after stimulator implantation and underwent stimulation holiday. Pain relief was significantly higher 1 month after stimulation holiday (39.4%±28.6%) compared with before stimulation holiday (8.7%±13.0%; mean difference 30.6%, 95% CI 21.9% to 39.3%, paired t-test p<0.001). A significantly higher responder rate (≥50% relief in pain intensity) was identified after stimulation holiday (57.5%) compared with before stimulation holiday (0%; Fisher’s exact test p<0.001). Associations of superior pain relief and responder rate remained significant at 3 and 6 months after stimulation holiday.DiscussionPatients who experience loss of efficacy from spinal cord stimulation habituation could attempt a stimulation holiday rather than abandon therapy. Rescue of analgesia may be achieved after implementing a stimulation holiday and restarting spinal cord stimulation.
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and painful condition in patients who have received chemotherapy. The role of neuromodulation therapy in treating pain and improving neurological function in CIPN remains unclear and warrants evidence appraisal. In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review to assess change in pain intensity and neurological function after implementation of any neuromodulation intervention for CIPN. Neuromodulation interventions consisted of dorsal column spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), or peripheral nerve stimulation (PNS). In total, 15 studies utilized SCS (16 participants), 7 studies utilized DRG-S (7 participants), and 1 study utilized PNS (50 participants). Per the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria, there was very low-quality GRADE evidence supporting that dorsal column SCS, DRG-S, and PNS are associated with a reduction in pain severity from CIPN. Results on changes in neurological function remained equivocal due to mixed study findings on thermal sensory thresholds and touch sensation or discrimination. Future prospective, well-powered, and comparative studies assessing neuromodulation for CIPN are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.