Face representation is one of the open problems in face detection. The recently proposed Multi-Block Local Binary Patterns (MB-LBP) representation has shown good results for this purpose. Although dissimilarity representation has proved to be effective in a variety of pattern recognition problems, to the best of our knowledge, it has never been used for face detection. In this paper, we propose new dissimilarity representations based on MB-LBP features for this task. Different experiments conducted on a public database, showed that the proposed representations are more discriminative than the original MB-LBP representation when classifying faces. Using the dissimilarity representations, a good classification accuracy is achieved even when less training data is available.
Taxonomies and ontologies for the characterization of everyday sounds have been developed in several research fields, including auditory cognition, soundscape research, artificial hearing, sound design, and medicine. Here, we surveyed 36 of such knowledge organization systems, which we identified through a systematic literature search. To evaluate the semantic domains covered by these systems within a homogeneous framework, we introduced a comprehensive set of verbal sound descriptors (sound source properties; attributes of sensation; sound signal descriptors; onomatopoeias; music genres), which we used to manually label the surveyed descriptor classes. We reveal that most taxonomies and ontologies were developed to characterize higher-level semantic relations between sound sources in terms of the sound-generating objects and actions involved (what/how), or in terms of the environmental context (where). This indicates the current lack of a comprehensive ontology of everyday sounds that covers simultaneously all semantic aspects of the relation between sounds. Such an ontology may have a wide range of applications and purposes, ranging from extending our scientific knowledge of auditory processes in the real world, to developing artificial hearing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.