fax 01-972-952-9435. AbstractSelf-diverting acids are commonly used in matrix acidizing treatments of carbonate formations, not only to increase permeability by generating wormholes, as with conventional acids such as HCl, but also to self-divert into zones of lower injectivity, in the goal of optimizing zonal coverage. In this paper, a new model for wormhole propagation is proposed, which describes both stimulation and diversion processes. A preliminary model is presented, which predicts wormhole propagation under radial-flow conditions for conventional acids. Then, a new set of parameters characterizing the reactive flow of self-diverting acids is developed, and the above model is extended to include self-diverting mechanisms. In particular, it is shown how the new parameters related to wormhole growth and those to diversion can be assessed from linear core-flood experiments and integrated into a new radial-flow model for field-scale prediction. Using this model, a new criterion is developed for diverter efficiency as a function of permeability contrast. Finally, the model is validated against radial flow experiments. It is found that self-diverting acids are characterized by two new parameters which, when combined with the model for wormhole propagation, can be used to predict the performance of self-diverting acids, both in terms of wormhole penetration and in terms of zonal coverage. Some criteria are also developed to assess the diversion ability of acids.
fax 01-972-952-9435. AbstractSelf-diverting acids are commonly used in matrix acidizing treatments of carbonate formations, not only to increase permeability by generating wormholes, as with conventional acids such as HCl, but also to self-divert into zones of lower injectivity, in the goal of optimizing zonal coverage. In this paper, a new model for wormhole propagation is proposed, which describes both stimulation and diversion processes. A preliminary model is presented, which predicts wormhole propagation under radial-flow conditions for conventional acids. Then, a new set of parameters characterizing the reactive flow of self-diverting acids is developed, and the above model is extended to include self-diverting mechanisms. In particular, it is shown how the new parameters related to wormhole growth and those to diversion can be assessed from linear core-flood experiments and integrated into a new radial-flow model for field-scale prediction. Using this model, a new criterion is developed for diverter efficiency as a function of permeability contrast. Finally, the model is validated against radial flow experiments. It is found that self-diverting acids are characterized by two new parameters which, when combined with the model for wormhole propagation, can be used to predict the performance of self-diverting acids, both in terms of wormhole penetration and in terms of zonal coverage. Some criteria are also developed to assess the diversion ability of acids.
The development of unconventional fields has experienced major efficiency gains. One main breakthrough in efficiency is the introduction of viscous slickwater fracturing fluids. Viscous slickwater enables placement of higher proppant concentration than conventional slickwater and is less damaging than guar-based fluid, leading to aggressive fracturing designs and improved production. High viscosity friction reducer is the main component in viscous slickwater, which can replace hybrid and crosslinked fracturing fluids in unconventional reservoir completions. The successful application of high viscosity friction reducing fluid requires proper fluid hydration and adequate viscosity, which depends on water salinity and proppant concentration. We developed techniques for improved testing of friction reducers and friction reducer selection guidelines to support optimum placement of the fracturing design. A comparison of production results of wells fractured by viscous slickwater to those offset wells demonstrated the effectiveness of aggressive design with viscous slickwater fluids. A high viscosity friction reducer was tested in the laboratory and applied in the field. Experimental data demonstrate a good correlation between low shear viscosity and proppant transport capability. Static and dynamic proppant transport data were used to design viscous slickwater to replace linear gel. The friction reducer has been successfully applied in the field in more than 3,000 stages. Formations that were traditionally fractured with crosslinked gel were successfully fractured using viscous slickwater with ease. Replacing conventional slickwater with viscous slickwater enables the transport of higher proppant concentration with little change in operations. Aggressive designs deliver a boost in production, thus confirming viscous slickwater as the fluid of choice. Improved chemistry enables easier operations, faster well completion, and improved initial production, as confirmed by case studies. This study provides information for the application of viscous slickwater and the rigorous testing that is required and often overlooked.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.