Graphene is at the centre of nanotechnology research. In order to fully exploit its outstanding properties, a mass production method is necessary. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to ~0.01 mg/ml by dispersion and exfoliation of graphite in organic solvents such as N-methylpyrrolidone. This occurs because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energy matches that of graphene. We confirm the presence of individual graphene sheets with yields of up to 12% by mass, using absorption spectroscopy, transmission electron microscopy and electron diffraction. The absence of defects or oxides is confirmed by X-ray photoelectron, infra-red and Raman spectroscopies. We can produce conductive, semi-transparent films and conductive composites. Solution processing of graphene opens up a whole range of potential large-scale applications from device or sensor fabrication to liquid phase chemistry. Hernandez et al 2Graphene is one of the most exciting nano-materials due to the cascade of unique physical properties that have recently been demonstrated. For example, due to the details of its electronic structure, charge carriers in graphene behave as massless Dirac fermions 1 . Furthermore, novel effects such as an ambipolar field effect 2 , room temperature quantum Hall effect 3 , breakdown of the Born-Oppenheimer approximation 4 are observed. However, as was the case in the early days of nanotube and nanowire research, graphene at present still suffers from one problem, critical for its mass-scale exploitation: it cannot yet be made with high yield. The standard procedure used to make graphene is micromechanical cleavage 5 . This yields the best samples to date, with mobilities up to 200,000 cm 2 /Vs. 6 However, single layers are a negligible fraction amongst large quantities of thin graphite flakes. Furthermore, it is difficult to see how to scale up this process to mass production. Alternatively, growth of graphene is also commonly achieved by annealing SiC substrates, but these samples are in fact composed of a multitude of domains, most of them sub-micrometer, and not spatially uniform in number, or in size over larger length scales 7 . A number of works have also reported graphene growth on metal substrates 8,9 , but this would require the sample transfer to insulating substrates in order to make useful devices, either via mechanical transfer or, via solution processing.Recently, a large number of papers have described the dispersion and exfoliation of graphene oxide (GO) [10][11][12][13] . This material consists of graphene-like sheets, chemically functionalised with compounds such as hydroxyls and epoxides, which stabilise the sheets in water 14 . However, this functionalisation results in considerable disruption of the electronic structure of the graphene. In fact GO is an insulator 15 rather than a semi-metal and is conceptually differen...
We have demonstrated a method to disperse and exfoliate graphite to give graphene suspended in water-surfactant solutions. Optical characterisation of these suspensions allowed the partial optimisation of the dispersion process. Transmission electron microscopy showed the dispersed phase to consist of small graphitic flakes. More than 40% of these flakes had <5 layers with ~3% of flakes consisting of monolayers. These flakes are stabilised against reaggregation by Coulomb repulsion due to the adsorbed surfactant. However, the larger flakes tend to sediment out over ~6 weeks, leaving only small flakes dispersed. It is possible to form thin films by vacuum filtration of these dispersions. Raman and IR spectroscopic analysis of these films suggests the flakes to be largely free of defects and oxides. The deposited films are reasonably conductive and are semi-transparent. Further improvements may result in the development of cheap transparent conductors.
Graphene nanoribbons (GNRs) are excellent candidates for next-generation electronic materials. Unlike GNRs produced by "top-down" methods such as lithographical patterning of graphene and unzipping of carbon nanotubes that cannot reach structural perfection, the fabrication of structurally well-defined GNRs has been achieved by a "bottom-up" organic synthesis via solution-mediated or surface-assisted cyclodehydrogenation. Specifically, non-planar polyphenylene precursors were first "build up" from small molecules, and then "graphitized" and "planarized" to yield GNRs. However, fabrication of processable and longitudinally well-extended GNRs has remained a major challenge. Here we report a "bottom-up" solution synthesis of long (>200 nm), liquid-phase processable GNRs with well-defined structure and a large optical bandgap of 1.88 eV. Scanning probe microscopy demonstrates self-assembled monolayers of GNRs, and non-contact, time-resolved Terahertz conductivity measurements reveal excellent charge-carrier mobility within individual GNRs. Such structurally well-defined GNRs offer great opportunities for fundamental studies into graphene nanostructures, as well as development of GNR-based nanoelectronics.DOI: 10.1038/NCHEM.1819 http://www.nature.com/nchem/journal/v6/n2/abs/nchem.1819.html 2 Graphene nanoribbons (GNRs), defined as nanometre-wide strips of graphene, are attracting increasing attention as highly promising candidates for next generation semiconductor materials 1,2,3,4 . Quantum confinement effects impart GNRs with semiconducting properties, i.e. with a finite bandgap, which critically depends on the ribbon width and its edge structure 1,3 . Fabrication of GNRs has been primarily carried out by "top-down" approaches such as lithographical patterning of graphene 5,6 and unzipping of carbon nanotubes 7,8 , revealing their semiconducting nature and excellent transport properties 1 . However, these methods are generally limited by low yields and lack of structural precision, leading to GNRs with uncontrolled edge structures.In contrast, a "bottom-up" chemical synthetic approach based on solution-mediated 9,10,11,12,13 or surface-assisted 14 cyclodehydrogenation, namely "graphitization" and "planarization", of tailor-made three-dimensional polyphenylene precursors offers an appealing strategy for making structurally well-defined and homogeneous GNRs. The polyphenylene precursors are built up from small molecules, and thus their structures can be tailored within the capabilities of modern synthetic chemistry 15 . However, GNRs (>30 nm) produced by solution-mediated methods have been precluded from unambiguous structural characterization, i.e. microscopic visualization, due to their limited processability 9,12 . On the other hand, GNRs produced by the surface-assisted protocol have been characterized to be atomically precise using scanning tunnelling microscopy (STM) 14 . Nevertheless, this method can only provide a limited amount of GNR material, which is further bound to a metal surface, impeding wide...
We have measured the dispersibility of graphene in 40 solvents, with 28 of them previously unreported. We have shown that good solvents for graphene are characterized by a Hildebrand solubility parameter of delta(T) approximately 23 MPa(1/2) and Hansen solubility parameters of delta(D) approximately 18 MPa(1/2), delta(P) approximately 9.3 MPa(1/2), and delta(H) approximately 7.7 MPa(1/2). The dispersibility is smaller for solvents with Hansen parameters further from these values. We have used transmission electron microscopy (TEM) analysis to show that the graphene is well exfoliated in all cases. Even in relatively poor solvents, >63% of observed flakes have <5 layers.
Graphene, an individual two-dimensional, atomically thick sheet of graphite composed of a hexagonal network of sp(2) carbon atoms, has been intensively investigated since its first isolation in 2004, which was based on repeated peeling of highly oriented pyrolyzed graphite (HOPG). The extraordinary electronic, thermal, and mechanical properties of graphene make it a promising candidate for practical applications in electronics, sensing, catalysis, energy storage, conversion, etc. Both the theoretical and experimental studies proved that the properties of graphene are mainly dependent on their geometric structures. Precise control over graphene synthesis is therefore crucial for probing their fundamental physical properties and introduction in promising applications. In this Minireview, we highlight the recent progress that has led to the successful chemical synthesis of graphene with a range of different sizes and chemical compositions based on both top-down and bottom-up strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.