Pneumonia is an infectious disease that affects the lungs and is one of the principal causes of death in children under five years old. The Chest X-ray images technique is one of the most used for diagnosing pneumonia. Several Machine Learning algorithms have been successfully used in order to provide computer-aided diagnosis by automatic classification of medical images. For its remarkable results, the Convolutional Neural Networks (models based on Deep Learning) that are widely used in Computer Vision tasks, such as classification of injuries and brain abnormalities, among others, stand out. In this paper, we present a transfer learning method that automatically classifies between 3883 chest X-ray images characterized as depicting pneumonia and 1349 labeled as normal. The proposed method uses the Xception Network pre-trained weights on ImageNet as an initialization. Our model is competitive with respect to state-of-the-art proposals. To make comparisons with other models, we have used four well-known performance measures, obtaining the following results: precision (0.84), recall (0.99), F1-score (0.91) and area under the ROC curve (0.97). These positive results allow us to consider our proposal as an alternative that can be useful in countries with a lack of equipment and specialized radiologists.
The Nearest Neighbor classifier is a simple but powerful nonparametric technique for supervised classification. However, it is very sensitive to noise and outliers, which could decrease the classifier accuracy. To overcome this problem, we propose two new editing methods based on maximum similarity graphs. Numerical experiments in several databases show the high quality performance of our methods according to classifier accuracy.
As of the end of 2019, the world suffered from a disease caused by the SARS-CoV-2 virus, which has become the pandemic COVID-19. This aggressive disease deteriorates the human respiratory system. Patients with COVID-19 can develop symptoms that belong to the common flu, pneumonia, and other respiratory diseases in the first four to ten days after they have been infected. As a result, it can cause misdiagnosis between patients with COVID-19 and typical pneumonia. Some deep-learning techniques can help physicians to obtain an effective pre-diagnosis. The content of this article consists of a deep-learning model, specifically a convolutional neural network with pre-trained weights, which allows us to use transfer learning to obtain new retrained models to classify COVID-19, pneumonia, and healthy patients. One of the main findings of this article is that the following relevant result was obtained in the dataset that we used for the experiments: all the patients infected with SARS-CoV-2 and all the patients infected with pneumonia were correctly classified. These results allow us to conclude that the proposed method in this article may be useful to help physicians decide the diagnoses related to COVID-19 and typical pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.