In order to determine the favourable oceanographic conditions which influence fish aggregation areas, the integration of remote sensing and GIS technique was applied. This paper aims to classify the spatial distribution and abundance of R. kanagurta in the South China Seas (SCS) using principal component analysis (PCA) and cluster analysis (CA). Remotely-sensed satellite oceanographic data of chlorophyll-a concentration (chl-a), sea surface temperature (SST) and sea surface height (SSH) together with high catch fish data were used to characterize seasonal abundance of the R. kanagurta. PCA identified two principal components that had eigenvalues >1 (PC1 and PC2) which accounted for 59.3% of the cumulative variance. Factor loading in the PCA proved that all environmental variables used in this study; chl-a (PC1), SSH and SST (PC2) had influenced the CPUE of R. kanagurta. Using CA, two clusters of CPUE abundance were identified. In cluster 1, an average CPUE of 350.7 kg/m³ with highest catch were recorded in January, April, May, July and October. Meanwhile, in cluster 2, an average CPUE of 1033.9 kg/m³ with highest catch were recorded in April, May, September and October. Preferred range for fish aggregations showed SST, SSH and chl-a were observed in between 29-31°C, 1.12-1.28 m and 0.24-0.42 mg/m 3 , respectively. Binary habitat suitability index was used to model the potential aggregation areas. The highest potential fish aggregations areas of R. kanagurta were found located along the coast of Peninsular Malaysia in early and late Southwest monsoon (at accuracy of 83.68% with kappa of 0.7). ABSTRAKIntegrasi antara data penderiaan jauh dan teknik GIS diaplikasi bagi menentukan keadaan oseanografi yang mempengaruhi kawasan pengumpulan ikan. Objektif dalam kajian ini adalah untuk mengelaskan taburan reruang dan kelimpahan R. kanagurta di Laut China Selatan menggunakan analisis komponen prinsipal (PCA) dan analisis kelompok (CA) serta mengenal pasti perhubungan antara taburan ikan dengan keadaan persekitaran. Hubungan antara data taburan klorofil-a (chl-a), suhu permukaan laut (SST) dan ketinggian permukaan laut (SSH) daripada satelit penderiaan jauh serta taburan tangkapan R. kanagurta digunakan untuk mengenal pasti hubungan taburan musiman ikan pelagik. PCA mengenal pasti dua komponen prinsipal yang mempunyai nilai eigen >1 (PC1 dan PC2) dengan nilai peratus kumulatif varians adalah 59.3%. Faktor penentuan dalam komponen prinsipal menunjukkan bahawa parameter persekitaran mempengaruhi data tangkapan ikan. CA menunjukkan dua kelompok tangkapan ikan dengan kelompok 1, nilai purata tangkapan ikan sebanyak 350.7 kg/m³ dengan catatan tangkapan ikan tertinggi pada bulan Januari, April, Mei, Julai, September dan Oktober. Manakala, di dalam kelompok 2, nilai purata tangkapan ikan sebanyak 1033.9 kg/m³ dengan catatan tangkapan ikan tertinggi pada bulan April, Mei, September dan Oktober. Julat kesesusaian cerapan pengumpulan ikan bagi SST, SSH dan chl-a didapati pada suhu 29-31°C, 1.12-1.28 m dan 0.24-0.42 mg/m³. Kawasan be...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.